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  This is the report on the basic research for AOARD entitled "Advanced computational methods 

for optimization of non-periodic inspection intervals for aging infrastructure". 

 

1. Introduction 

 

  There is a demand of performing maintenance of aging infrastructure more efficiently and 

effectively in many industries. Condition-based maintenance policy has been applied, significantly 

decreased the cost of repairing/replacing of damaged/failure parts. Some optimized inspection 

schemes are proposed considering the total life cost including inspection costs, repair costs, and the 

penalty costs of system failure. However, for a safety-critical system in which system failure is not 

allowed, the optimization of the inspection scheme is due to the decreasing of inspection cost while 

guaranteeing a certain level of reliability of whole system. 

  This report proposes an approach for optimization of non-periodic inspection scheme on a finite 

time horizon for a multi-component safety-critical system. The system consists of several components, 

each of which is subjected to soft failure due to the failure tolerance design. The non-periodic 

inspection scheme gives a guaranteed level of reliability throughout the life of the system and at the 

same time reduces the inspection cost. 

  The approach presented in this report is an improvement of a former article [1] in which a Bayesian 

method for non-periodic inspection of aircraft structures is introduced. The Bayesian method is 

improved by applying conditional probability into the simulations and gives more convenient in 

application. By Bayesian updating, the uncertain parameters can be estimated appropriately and 

reasonable inspection interval is scheduled. 

  Statistical analysis of this approach are performed. Results show that this advanced approach can 

reduce inspection cost and at the same time maintain the reliability level. The reliability of the 

estimated reliability is discussed and the presented approach has high reliability for practical usage. 

  An application example for turbine engine components is shown in this report. The presented 

approach still can optimized the non-periodic inspection interval when the parameter of crack 

propagation function is uncertain, while the normal Retirement–For-Cause (RFC) procedure meets 

difficulties. Furthermore, the probability of detection (POD) and the random failure can be considered 

by introducing fixed parameters, which is an improvement comparing with RFC. 

  The contents of this report include: 

1) Non-periodic inspection scheme using probabilistic method 

2) Bayesian method for uncertain parameters 

3) Statistical analysis of the approach presented in this report 

4) Improvement of Bayesian method by applying conditional probability 

5) Application example for turbine engine components 
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2. Non-periodic inspection scheme using probabilistic method 

 

  Fatigue is one of the most important problems of aging infrastructure subjected to random dynamic 

loads. Fatigue damage is considered to initiate in structural element and continues by crack 

propagation, resulting in strength degradation. Periodic inspections are common practice in order to 

maintain their reliability above a desired level. However, considering the initiation and propagation of 

fatigue cracks as time goes by, it is obvious reasonable to perform non-periodic inspections instead.  

 

2.1.  Basic assumption and equations 

 

  The whole or part of the aging infrastructure as well as aircraft is refereed as system hereafter. A 

system is considered to consist of a specific number of elements. An element is defined so that it 

possesses only one fatigue-critical location. Throughout this report, time is measured in number of 

total accumulated cycles. 

 

2.1.1. Crack, failure and inspection 

 

  All elements are inspected at the initiation of service and at the time of each scheduled inspection. 

Cracks and failures (soft failure which do not cause system un-functioning) can only be detected 

during inspection. The following assumptions are made: 

 

 The probability of detecting of a crack is a function of crack length, which is shown later. 

 The probability of detecting element failure is equal to unity. 

 All cracks and failures are repaired or replaced when detected. 

 After repair/replacement, element regains its initial strength (same as a new one). 

 No stress redistribution is considered after the occurrence of crack and failure. 

 

2.1.2. Fatigue crack initiation 

 

  The time to crack initiation (TTCI), denoted by t and measured in number of cycles, is assumed to 

be a random variable with density function following the Weibull distribution: 

𝑓𝑐(𝑡|𝛽) =
𝛼

𝛽
∙ (

𝑡

𝛽
)

∝−1

∙ 𝑒𝑥𝑝 [− (
𝑡

𝛽
)

𝛼

]            𝑡 > 0. (2-1) 

  Additional uncertainty is introduced in the TTCI by a scale parameter β which is considered to be a 

random variable. Therefore, eq. (2-1) indicates a Weibull density function conditional to a given value 
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of β. This is the first parameter which is considered uncertain in this study. The shape parameter α is 

assumed to be deterministic for the sake of simplicity. The distribution function of the TTCI is 

expressed by: 

𝐹𝑐(𝑡|𝛽) = 1 − 𝑒𝑥𝑝 [− (
𝑡

𝛽
)

𝛼

]            𝑡 > 0. (2-2) 

 

2.1.3. Fatigue crack propagation 

 

  Fracture mechanics theory is used to determine the length of a propagating crack under random 

stress. For the purpose of this study, it is assumed that a crack grows according to the following law 

according to article [2]: 

d𝑎

d𝑡
= 𝑐 ∙ 𝑎𝑏 2⁄  , (2-3) 

where a is the crack length, c and b are constants. Integrating eq. (2-3) from the initial crack length a0 

at time of crack initiation tc, up to the current crack length a at time t, the following expression is 

obtained: 

𝑎(𝑡 − 𝑡𝑐|𝑐) = [−𝑏′𝑐(𝑡 − 𝑡𝑐) + 𝑎0
−𝑏′

]
−1 𝑏′⁄

 where 𝑏′ =
𝑏 − 2

2
  . (2-4) 

  Uncertainty in fatigue crack propagation is introduced by parameter c which is considered to be a 

random variable. Therefore, the crack length indicated by eq. (2-4) is conditional to a given value of 

c. This is the second parameter which is considered uncertain in this study. 

 

2.1.4. Probability of detection 

 

  The probability of detecting an existing crack of length a during an inspection is given by: 

𝐷(𝑎|𝑑) = 1 − 𝑒𝑥𝑝 [− (
𝑎 − 𝑎𝑚𝑖𝑛

𝑑 − 𝑎𝑚𝑖𝑛
)

𝜃

] . (2-5) 

  Uncertainty in the probability of crack detection is introduced by parameter d which is considered 

to be a random variable and therefore the probability shown in eq. (2-5) is conditional to a given value 

of d. This is the third parameter which is considered uncertain in this study. Finally, amin denotes the 

minimum detectable length and θ is a constant. 
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2.1.5. Failure rate and probability of safety 

 

  Failure of an element occurs when the random stress exceeds the strength of the element for the first 

time. An element can fail either before or after crack initiation. According to article [2], the failure rate 

before and after crack initiation at time instant tc are given as followed. 

  Before crack initiation: 

ℎ(𝑡) = 𝑒𝑥𝑝(𝑟) = ℎ0 . (2-6) 

  After crack initiation: 

ℎ(𝑡) =
𝛼𝑟

𝛽𝑟
∙ (

𝑡

𝛽𝑟
)

∝𝑟−1

+ 𝑒𝑥𝑝(𝑟) . (2-7) 

  For the sake of simplicity, parameter r, αr, βr, are assumed to be deterministic constants. Then, the 

probability of safety of an element before crack initiation during the service period from time instant 

Tl up to time instant t is denoted as U and given by: 

𝑈(𝑡 − 𝑇𝑙) = 𝑒𝑥𝑝 {− ∫ ℎ(𝜏)d𝜏
𝑡

𝑇𝑙

} = 𝑒𝑥𝑝 {− ∫ 𝑒𝑥𝑝(𝑟)d𝜏
𝑡

𝑇𝑙

}  (2-8) 

or 

𝑈(𝑡 − 𝑇𝑙) = 𝑒𝑥𝑝{−(𝑡 − 𝑇𝑙) ∙ 𝑒𝑥𝑝(𝑟)}      for  𝑡 ≤ 𝑡𝑐 , (2-9) 

where Tl is the time of service initiation for the element under consideration. On the other hand, the 

probability of safety of an element after crack initiation during the service period from time instant of 

crack initiation tc up to time instant t is denoted as V and given by: 

𝑉(𝑡 − 𝑡𝑐) = 𝑒𝑥𝑝 {− ∫ ℎ(𝜏)d𝜏
𝑡

𝑡𝑐

} = 𝑒𝑥𝑝 {− ∫ [
𝛼𝑟

𝛽𝑟
∙ (

𝜏

𝛽𝑟
)

∝𝑟−1

+ 𝑒𝑥𝑝(𝑟)] d𝜏
𝑡

𝑡𝑐

}  (2-10) 

or 

𝑉(𝑡 − 𝑡𝑐) = 𝑒𝑥𝑝 {−
1

𝛽𝑟
𝛼𝑟

(𝑡𝛼𝑟 − 𝑡𝑐
𝛼𝑟) − (𝑡 − 𝑡𝑐) ∙ 𝑒𝑥𝑝(𝑟)}      for  𝑡 > 𝑡𝑐  . (2-11) 

  The probability of safety (sometimes refer as reliability) mentioned here is a conditional probability 

in the conditions of crack initiation happens or not. The true reliability of an element should be a sum 

of the probability of all conditions. 

  It should be pointed out that the functional forms used for fatigue crack initiation, crack propagation, 

probability of detection, failure rate and probability of safety are selected mainly to demonstrate the 

capabilities of the presented approach. It is a straightforward task to change any equations as well as 

parameters according to the objective, as shown in the application example in a later chapter. 
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2.2.  Possible events and probabilities 

 

  At the time of j-th inspection performed at time Tj, all possible events and their probability must be 

considered in order to estimate the reliability of a certain element at any specific time.  

 

2.2.1. Events and probabilities that a failure found 

 

  Event that the element is found to have failed at the time of the j-th inspection Tj (Equivalently, 

failure occurred during the time interval [Tj-1, Tj]) will be denoted as event {A: j, l}. This event consists 

of the following two mutually exclusive events: 

 

(1) E1, j = event that the element failed before crack initiation, sometime between two inspections, 

during the time interval at [Tj-1, Tj]. 

Event E1, j also consists of two sub-events E1a, j and E1b, j. Event E1a, j is the sub-event of E1, j 

that no crack would have initiated in the element before Tj if failure did not occur sometime 

during the time interval [Tj-1, Tj]. The probability P1a, j of event E1a, j is given by: 

𝑃1a,𝑗  = {1 − 𝐹𝑐(𝑇𝑗 − 𝑇𝑙|𝛽)} ∙ {𝑈(𝑇𝑗−1 − 𝑇𝑙) − 𝑈(𝑇𝑗 − 𝑇𝑙)} . (2-12) 

Event E1b, j is the sub-event of E1, j that a crack would have initiated in the element at time 

instant t (Tj-1 < t < Tj) if failure did not occur during the time interval [Tj-1, t]. The probability 

P1b, j of event E1b, j is given by: 

𝑃1b,𝑗  = ∫ 𝑓𝑐(𝑡 − 𝑇𝑙|𝛽) ∙ {𝑈(𝑇𝑗−1 − 𝑇𝑙) − 𝑈(𝑡 − 𝑇𝑙)}d𝑡
𝑇𝑗

𝑇𝑗−1

 . (2-13) 

 

(2) E2, j = event that the element failed after crack initiation, sometime between two inspections, 

during the time interval [Tj-1, Tj]. 

Event E2, j also consists of two sub-events E2a, j and E2b, j. Event E2a, j is the sub-event of E2, j 

that a crack initiated at time instant t in the time interval [Ti, Ti+1] where i = l, … , j-2. The crack 

was not detected during all subsequent inspections (from inspection Ti+1 up to inspection Tj-1 

inclusive) and the element failed sometime during the time interval [Tj-1, Tj]. The probability 

P2a, j of event E2a, j is given by: 
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𝑃2a,𝑗  = ∑ {∫ 𝑓𝑐(𝑡 − 𝑇𝑙|𝛽) ∙ 𝑈(𝑡 − 𝑇𝑙) ∙ [𝑉(𝑇𝑗−1 − 𝑡) − 𝑉(𝑇𝑗 − 𝑡)]
𝑇𝑖+1

𝑇𝑖

𝑗−2

𝑖=𝑙

∙ [ ∏ {1 − 𝐷(𝑎(𝑇𝑘 − 𝑡|𝑐)|𝑑)}

𝑗−1

𝑘=𝑖+1

] d𝑡} . 

(2-14) 

 

Event E2b, j is the sub-event of E2, j that a crack initiated in the element at time instant t in the 

time interval [Tj-1, Tj] and the element failed sometime during the time interval [t, Tj]. The 

probability P2b, j of event E2b, j is given by: 

𝑃2b,𝑗  = ∫ 𝑓𝑐(𝑡 − 𝑇𝑙|𝛽) ∙ 𝑈(𝑡 − 𝑇𝑙) ∙ {1 − 𝑉(𝑇𝑗 − 𝑡)}d𝑡 
𝑇𝑗

𝑇𝑗−1

. (2-15) 

 

2.2.2. Events and probabilities that a crack found 

 

  Event that the element is found not to have failed at the time of the j-th inspection Tj and a crack of 

length between aj and aj + daj is detected in the element will be denoted as event {B(aj): j, l}. This 

event consists only one event and alternatively denoted by E3, j . 

  Since a crack of length between aj and aj + daj is detected at time of j-th inspection, the time instance 

tc of initiation of the crack can be computed from 

𝑎𝑗 = 𝑎(𝑇𝑗 − 𝑡𝑐|𝑐) = [−𝑏′𝑐(𝑇𝑗 − 𝑡𝑐) + 𝑎0
−𝑏′

]
−1 𝑏′⁄

 (2-16) 

as: 

𝑡𝑐 = 𝑇𝑗 +
1

𝑏′𝑐
(𝑎𝑗

−𝑏′
− 𝑎0

−𝑏′
) . (2-17) 

  Differential dtc can be calculated as: 

d𝑡𝑐 = |
d𝑡𝑐

d𝑎𝑗
| d𝑎𝑗 =

d𝑎𝑗

𝑐 ∙ 𝑎𝑗
𝑏/2

 . (2-18) 

  The probability p3, j daj of event E3, j is given by: 

𝑝3,𝑗 (𝑎𝑗)d𝑎𝑗 = 𝑓𝑐(𝑡𝑐 − 𝑇𝑙|𝛽)d𝑡𝑐 ∙ 𝑈(𝑡𝑐 − 𝑇𝑙) ∙ 𝑉(𝑇𝑗 − 𝑡𝑐)  

∙ [ ∏ {1 − 𝛿 ∙ 𝐷(𝑎(𝑇𝑘 − 𝑡𝑐|𝑐)|𝑑)}

𝑗−1

𝑘=𝑙+1

] ∙ 𝐷(𝑎𝑗|𝑑) . 
(2-19) 
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  Substituting tc of eq. (2-17) and dtc of eq. (2-18) into eq. (2-19), the probability is expressed 

completely as a function of aj where δ is given by: 

𝛿 = {
1     for   𝑇𝑘 > 𝑡𝑐 
0     for   𝑇𝑘 < 𝑡𝑐 

 . (2-20) 

 

2.2.3. Events and probabilities that nothing found 

 

  Event that the element is found not to have failed or cracked at the time of the j-th inspection Tj will 

be denoted as event {C: j, l}. This event consists of the following two mutually exclusive events: 

(1) E4, j = event that the element did not fail during the time interval at [Tj-1, Tj] and no crack exists 

in the element. 

The probability P4, j of event E4, j is given by: 

𝑃4,𝑗  = {1 − 𝐹𝑐(𝑇𝑗 − 𝑇𝑙|𝛽)} ∙ 𝑈(𝑇𝑗 − 𝑇𝑙) . (2-21) 

 

(2) E5, j = event that the element did not fail during the time interval at [Tj-1, Tj] but a crack exists 

in the element which is not detected during all subsequent inspections (from inspection Ti+1 up 

to inspection Tj inclusive). 

The probability P5, j of event E5, j is given by: 

𝑃5,𝑗 = ∑ {∫ 𝑓𝑐(𝑡 − 𝑇𝑙|𝛽) ∙ 𝑈(𝑡 − 𝑇𝑙) ∙ 𝑉(𝑇𝑗 − 𝑡)
𝑇𝑖+1

𝑇𝑖

𝑗−1

𝑖=𝑙

∙ [ ∏ {1 − 𝐷(𝑎(𝑇𝑘 − 𝑡|𝑐)|𝑑)}

𝑗

𝑘=𝑖+1

] d𝑡}. 

(2-22) 

 

2.2.4. Conclusions of all events and probabilities 

 

  Finally, the probabilities of all events {A: j, l}, {B(aj): j, l} and {C: j, l} are obtained as: 

𝑃{𝐴: 𝑗, 𝑙} = 𝑃1a,𝑗 + 𝑃1b,𝑗 + 𝑃2a,𝑗 + 𝑃2b,𝑗 (2-23) 

𝑃{𝐵(𝑎𝑗): 𝑗, 𝑙} = 𝑝3,𝑗 (𝑎𝑗)d𝑎𝑗 (2-24) 

𝑃{𝐶: 𝑗, 𝑙} = 𝑃4,𝑗 + 𝑃5,𝑗. (2-25) 
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2.3.  Reliability computation 

 

  The reliability of elements at time instant t* during time interval [Tj, Tj+1] can be calculated 

depending if the elements are repaired/replaced or not at the j-th inspection. 

 

2.3.1. Reliability of elements repaired or replaced at the j-th inspection 

 

  An element is repaired or replaced at j-th inspection in the case of {A: j, l} and {B(aj): j, l}. All 

conditions of the element is reset so that the time of service initiation Tl is equal to Tj. As described in 

section 2.1.5., the reliability R(t*: Rep.) of an element (in other words, the probability of element 

survival) is computed as the sum of the following two probabilities: 

(1) probability that the element will survive during the time interval [Tj, t*] and no crack will initiate 

before t*, 

(2) probability that a crack will initiate in the element sometime during the time interval [Tj, t*], 

but the element will survive during the same time interval. 

  The reliability R(t*: Rep.) is then calculated as: 

𝑅(𝑡∗: Rep) = {1 − 𝐹𝑐(𝑡∗ − 𝑇𝑗|𝛽)} ∙ 𝑈(𝑡∗ − 𝑇𝑗)

+ ∫ 𝑓𝑐(𝑡 − 𝑇𝑗|𝛽) ∙ 𝑈(𝑡 − 𝑇𝑗) ∙ 𝑉(𝑡∗ − 𝑡)d𝑡
𝑡∗

𝑇𝑗

 . 
(2-26) 

 

2.3.2. Reliability of elements not repaired nor replaced at the j-th inspection 

 

  An element is neither repaired nor replaced at j-th inspection in the case of {C: j, l}. Comparing 

with the case when repair/replacement happened, there is a possibility that a crack initiated before the 

j-th inspection and remained un-founded. The reliability R(t*: No.) of an element is computed as the 

sum of the following three probabilities divided by the probability of event {C: j, l}(which is given by 

P4, j +P5, j): 

(1) probability that the element will survive during the time interval [Tl, t*] and no crack will initiate 

before t*, 

(2) probability that a crack will initiate in the element sometime during the time interval [Tj, t*], 

but the element will survive during the time interval[Tl, t*], 

(3) probability that a crack initiated in the element at some time instant t during the time interval 

[Ti, Ti+1] where i = l, … , j-1. This crack was not detected during all subsequent inspections 

(from inspection Ti+1 up to inspection Tj inclusive) and the element will survive during time 

interval [Tl, t*]. 
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  The reliability R(t*: No.) is then calculated as: 

𝑅(𝑡∗: No. ) =
𝑍

𝑃4,𝑗 + 𝑃5,𝑗
 . (2-27) 

  The expression for Z is given by: 

𝑍 = {1 − 𝐹𝑐(𝑡∗ − 𝑇𝑙|𝛽)} ∙ 𝑈(𝑡∗ − 𝑇𝑙) + ∫ 𝑓𝑐(𝑡 − 𝑇𝑙|𝛽) ∙ 𝑈(𝑡 − 𝑇𝑙) ∙ 𝑉(𝑡∗ − 𝑡)d𝑡
𝑡∗

𝑇𝑗

+ ∑ {∫ 𝑓𝑐(𝑡 − 𝑇𝑙|𝛽) ∙ 𝑈(𝑡 − 𝑇𝑙) ∙ 𝑉(𝑡∗ − 𝑡)
𝑇𝑖+1

𝑇𝑖

𝑗−1

𝑖=𝑙

∙ [ ∏ {1 − 𝐷(𝑎(𝑇𝑘 − 𝑡|𝑐)|𝑑)}

𝑗

𝑘=𝑖+1

] d𝑡} . 

(2-28) 

 

2.3.3. Reliability with all parameters fixed 

 

  As mention earlier, parameters β, c and d are considered as possible sources of uncertainty. These 

uncertainties will be discussed and solved in the later chapter by applying Bayesian method. In this 

chapter, non-periodic inspection intervals with parameters fixed will be discussed first. In this case, 

the reliability of entire system of M elements at time instant t* after the latest inspection Ti, is denoted 

by �̃�𝑀(𝑡∗) and calculated as: 

�̃�𝑀(𝑡∗) = [∏ 𝑅𝑚(𝑡∗: Rep. )

𝑀1

𝑚=1

] ∙ [∏ 𝑅𝑚(𝑡∗: No. )

𝑀2

𝑚=1

] , (2-29) 

where M1 = the number of elements repaired or replaced at j-th inspection, M2 = the number of 

elements found intact at j-th inspection, and M1+M2 = M  which is the total number of entire system. 

Rm is the reliability of single element (denoted as m-th element) defined in eq. (2-26) and (2-27). 

 

2.4.  Numerical results and discussions 

 

  The system considered in this study is assumed to have 50 elements (M=50). Its service life is 

limited to 30,000 cycles and the minimum reliability level for entire system is set to 0.8 (Rdesign=0.8). 

In general, three uncertain parameters have been considered: β, c and d. However, discussions about 

non-periodic inspection with true values (deterministic values) are presented first in this chapter.  
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Table 2-1 Values of parameters in numerical simulation 

Item True values Uncertain range 

General Design life limitation 30,000 cycles  

Minimum level of Rdesign 0.8  

Number of element M 50  

Initiation: 

Eq. (2-1) 

Parameter α 4.0  

Parameter β 40,000 cycles 20,000 ~ 60,000 

Propagation: 

Eq. (2-3) 

Eq. (2-4) 

Parameter b 2.96  

Parameter c 1.6*10-4mm-0.48/cycle 0.6*10-4 ~ 2.6*10-4 

Initial crack length a0 2.5mm  

Detectability: 

Eq. (2-5) 

Parameter amin 2.5mm  

Parameter θ 1.4  

Parameter d 40mm 20 ~ 60 

Reliability: 

Eq. (2-6) 

Eq. (2-7) 

Parameter r -14.5  

Parameter αr 3.7  

Parameter βr 8,000 cycles  

 

  Table 2-1 shows the values of all parameters (uncertain and deterministic) involved in the problem. 

Note that the three uncertain parameters β, c and d are given true (deterministic) values along with 

their ranges (indicating uncertainty). 

 

2.4.1. Survey of parameters 

 

  First, parameters β correspond to the initiation of a fatigue crack is investigated. Fig. 2-1 shows the 

probability density of crack initiation with different parameter β. Initiation of fatigue cracks happens 

earlier when parameter β is smaller. The peak values of probability density shown in figures are nearly 

the same as the parameter β itself. The integrated values along the time axis, which is the probability 

function of crack initiation are shown in Fig. 2-2. The probabilities of crack initiation in a single 

element within the service life limitation (30,000 cycles) are 0.994, 0.271 and 0.060 respectively. 

Considering the entire system consists of 50 elements, the average number of fatigue cracks initiated 

in the whole service life of this system is 49.7, 13.5 and 3.0. These number will greatly affect the 

reliabilities of the system and inspection scheme should be different when parameters β changes. A 

wrong prediction of this parameter will result in a totally wrong inspection scheme. 
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(a) Parameter β = 20,000 

 

(b) Parameter β = 40,000 

 

(c) Parameter β = 60,000 

Fig. 2-1 Probability density of crack initiation 
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(a) Parameter β = 20,000 

 

(b) Parameter β = 40,000 

 

(c) Parameter β = 60,000 

Fig. 2-2 Probability of crack initiation 
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  Parameters c correspond to the propagation of a fatigue crack affects the growth speed of crack 

length. Fig. 2-3 shows the crack length as a function of time since the initiation of a fatigue crack with 

different parameter c. It is obvious that propagation speed of a fatigue crack changes when parameter 

c changes. However, the crack length is not directly connected to the reliability of an element. 

Depending on the parameter c, events happen at the time of inspection will be different because the 

cracks are longer and are more likely be found during inspection. However, it is clear that the reliability 

is less sensitive to c than to β.  

 

  Parameters d correspond to the probability of detection of a crack affects the inspection results at 

each scheduled inspection time. Fig. 2-4 shows probability of detection as a function of crack length 

with different parameter d. Parameters d have nothing to do with the reliability of an element nor the 

crack size. It is clear that the parameters d is the least important factor to the reliability of an element 

as well as to the inspection scheme. 

 

2.4.2. Periodic inspection scheme 

 

  Because of the lack of actual data, numerical simulations are performed in order to get a virtual 

system that follow all the assumptions and equations describe at the beginning of this chapter. All 

parameters in the equations are assumed to be deterministic as shown in Table 2-1. Periodic inspection 

scheme with an inspection interval of 2500, 2000, 1500, 1000 and 750 cycles are applied. The 

reliabilities during the service life with different periodic inspection intervals are estimated using 

probabilistic analysis method. 

 

  Reliabilities for the periodic inspections with different intervals are shown in Fig. 2-5 ~ Fig. 2-9, 

where figure (a) is the reliability of a single element and (b) is the reliability of entire system with 50 

elements. For the reliability of a single element shown in figure (a), reliabilities of all elements change 

in the same way at the very beginning because basically all elements are in the same conditions. 

However, a few of the elements are repaired or replaced due to crack or failure and the curve of 

reliability separates into two. Although there are some elements are repaired or replaced and the 

reliability of these elements are restored, the reliability of entire system goes downward faster because 

of the aging of the un-replaced elements. The reliabilities of entire system go beneath the designed 

minimum level eventually at the time of 20000, 22000, 24000, 27000 cycles when using periodic 

inspection interval of 2500, 2000, 1500 and 1000 cycles. Only the inspection interval of 750 cycles 

keeps the reliability above the level of 0.8 but with many unnecessary inspections obviously. 
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(a) Parameter c = 0.6*10-4 

 

(b) Parameter c = 1.6*10-4 

 

(c) Parameter c = 2.6*10-4 

Fig. 2-3 Crack length as a function of time 
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(a) Parameter d = 20 

 

(b) Parameter d = 40 

 

(c) Parameter d = 60 

Fig. 2-4 Probability of detection as a function of crack length 
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(a) Reliability of a single element 

 

(b) Reliability of entire system with 50 elements 

Fig. 2-5 Reliability for the periodic inspection with an interval of 2500 cycles 

 

 

(a) Reliability of a single element 

 

(b) Reliability of entire system with 50 elements 

Fig. 2-6 Reliability for the periodic inspection with an interval of 2000 cycles 

Low reliability 

Low reliability 
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(a) Reliability of a single element 

  

(b) Reliability of entire system with 50 elements 

Fig. 2-7 Reliability for the periodic inspection with an interval of 1500 cycles 

 

 

(a) Reliability of a single element 

 

(b) Reliability of entire system with 50 elements 

Fig. 2-8 Reliability for the periodic inspection with an interval of 1000 cycles 

Low reliability 

Low reliability 
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(a) Reliability of a single element 

 

(b) Reliability of entire system with 50 elements 

Fig. 2-9 Reliability for the periodic inspection with an interval of 750 cycles 

 

2.4.3. Non-periodic inspection scheme 

 

  Numerical simulations are performed in order to get a virtual system the same as last section. It 

should be pointed out that this virtual system follows equations with random distribution, that is to 

say, the output of each simulation is not exactly the same. Non-periodic inspections intervals are 

predicted by computing the reliability step by step and maintain the reliability above the minimum 

level 0.8. Once the estimated reliability of next step is going to be lower than expected level, an 

inspection is performed and the reliability regain 1.0. 

  Reliabilities for the non-periodic inspections are shown in Fig. 2-10, where figure (a) is the 

reliability of a single element and (b) is the reliability of entire system with 50 elements. Same 

characteristics of the reliability as the periodic inspection scheme can be found, such as that the 

reliability of entire system goes downward faster while time goes by. By applying the non-periodic 

inspection scheme, the reliabilities of entire system maintains the required minimum level of 0.8. The 

inspection schedule are shown in Table 2-2. The interval between inspections is very long at the very 

beginning and subsequently becomes shorter as a function of time. It is a logical consequence for the 

fact that as the system gets older, more frequent inspections are needed instead of using a uniform 

inspection interval. The reliability of a 13 time non-periodic inspections maintains nearly the same as 

the minimum reliability of a 40 time periodic inspections. 
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Table 2-2 Inspection schedule of non-periodic scheme for the case with true values 

Inspection no. Inspection time (cycles) Inspection interval (cycles) 

1 8740 8740 

2 14460 5720 

3 17570 3110 

4 19740 2170 

5 21460 1720 

6 22920 1460 

7 24200 1280 

8 25350 1150 

9 26400 1050 

10 27380 980 

11 28280 900 

12 29150 870 

13 29960 810 

 

 

  

(a) Reliability of a single element 

 

(b) Reliability of entire system with 50 elements 

Fig. 2-10 Reliability for the non-periodic inspection 
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2.4.4. Comparison of non-periodic and periodic inspection 

 

  Periodic and non-periodic inspection schemes using probabilistic analysis method are discussed in 

this chapter. The time intervals, number of inspections and minimum reliability for entire system of 

each inspection scheme are summarized in Table 2-3. Periodic inspection schemes are easy to apply 

and suitable for the cases that all fragile parts are replaced during overhaul. However, when condition 

based maintenance are more and more adopted, a non-periodic inspection scheme would be a more 

straightforward solution. According to the numerical results, a non-periodic inspection scheme which 

consists of 13 times inspections maintains the minimum reliability over 0.80, while a periodic 15 times 

inspections scheme has a minimum reliability of only 0.46. On the other hand, at least 40 times 

periodic inspections are needed to get the minimum reliability of 0.81. 

  The reliabilities shown here are computed by a probabilistic analysis method, using some 

assumptions and equations to represent the initiation of a fatigue crack, propagation of a crack and the 

probability of detection of a crack. The problem of the uncertainty of some parameters still exists, but 

no matter how these parameters are, non-periodic inspection is undeniable superior to periodic 

inspection. 

 

Table 2-3 Comparison of non-periodic and periodic inspection 

Inspection type Time interval Number of Inspections Minimum reliability 

1. Periodic 2500 cycles 12 0.35 

2. Periodic 2000 cycles 15 0.46 

3. Periodic 1500 cycles 20 0.59 

4. Periodic 1000 cycles 30 0.73 

5. Periodic 750 cycles 40 0.81 

6. Non-periodic 810 ~ 8740 cycles 13 0.80 

 

2.5.  Summary 

 

  Main contents and results obtained in this chapter are summarized as follows: 

(1) A probabilistic analysis method is introduced to estimate the reliability of a multi-elements 

system in order to optimize the inspection scheme. 

(2) Periodic and non-periodic inspection schemes are discussed. 

(3) Non-periodic inspection scheme are optimized to maintain a required minimum reliability. It is 

obviously superior to periodic inspection because of higher reliability and less inspections. 
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3. Bayesian method for uncertain parameters 

 

  It is assumed that the fatigue crack considered in the elements followed the equations with some 

parameters given. However, these parameters are not easily obtained and change depending on 

environment conditions. In order to solve the problem of these uncertainties, Bayesian method is 

applied, thus these parameters are modified according to the information from inspection results. 

 

3.1.  Bayesian analysis 

 

3.1.1. Prior joint density function 

 

  As mentioned earlier, parameters β, c and d are considered as possible sources of uncertainty. 

Initially, it is assumed that β, c and d are jointly and uniformly distributed according to the following 

prior density function: 

𝑓0(𝛽, 𝑐, 𝑑) =
1

(𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛)(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛)(𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛)
= constant = 𝑓0, (3-1) 

where 

𝛽𝑚𝑖𝑛 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥;  𝑐𝑚𝑖𝑛 ≤ 𝑐 ≤ 𝑐𝑚𝑎𝑥;  𝑑𝑚𝑖𝑛 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥 . (3-2) 

 

3.1.2. Likelihood function 

 

  The likelihood function LFj for the entire system as a result of the j-th inspection is calculated as: 

𝐿𝐹𝑗 = ∏ 𝐿𝐹𝑗
(𝑚)

𝑀

𝑚=1

 , (3-3) 

where 𝐿𝐹𝑗
(𝑚)

 is the likelihood function for element m resulting from the j-th inspection and M is the 

total number of elements in the system. For a specified element m, consider that replacement or repair 

occurred at inspections  𝑇𝑙1
,  𝑇𝑙2

, … , 𝑇𝑙𝑟
, where r indicates the number of times the element has been 

repaired or replaced before the j-th inspection. Consequently, 

𝑙1 < 𝑙2  < ⋯  < 𝑙𝑟  < 𝑗 . (3-4) 

  It is pointed out that 𝑙1, 𝑙2, … 𝑙𝑟 are all known at the time of the j-th inspection since the entire 

inspection history of each element is considered to be known. The prior density function eq. (3-1) is 

supposed to be the possible distribution at the time of the initiation of service and the likelihood 

function of an element needs to consider from service start. This may be not convenient when not all 
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the historical information of inspections are available and someone wants to start the simulation in the 

middle of a service life. Bayesian analysis method using conditional probability will be discussed in a 

later chapter by which can solve this problem. 

  The likelihood function for element m resulting from the j-th inspection is given by: 

𝐿𝐹𝑗
(𝑚)

= 𝑃𝑚{𝑋: 𝑗, 𝑙𝑟 } ∙ ∏ 𝑃𝑚{𝑌: 𝑙𝑘 , 𝑙𝑘−1 }

𝑟

𝑘=1

 . (3-5) 

  In eq. (3-5), X stands for either even A, B or C depending on the result of the j-th inspection for 

element m, Y stands for either A or B depending on the result of the 𝑙𝑘-th inspection for element m. 

The probability Pm{*} refers to eq. (2-23), (2-24) and (2-25). Finally, for the case where element m is 

found intact at all inspections prior to the j-th, the r = 0 and l0 denotes the time of initiation of service. 

The product appearing at the right-hand-side of eq. (3-5) is set equal to unit. It is very important to 

note that the likelihood function defined in eq. (3-5) is obviously conditional to given values of β, c 

and d. 

 

3.1.3. Posterior joint density function 

 

  The posterior joint density function of parameters β, c and d after the j-th inspection is given by: 

𝑓𝑗(𝛽, 𝑐, 𝑑) =
𝐿𝐹𝑗 ∙ 𝑓0

∫ ∫ ∫ (Numerator)d𝛽d𝑐d𝑑
𝑑𝑚𝑎𝑥

𝑑𝑚𝑖𝑛

𝑐𝑚𝑎𝑥

𝑐𝑚𝑖𝑛

𝛽𝑚𝑎𝑥

𝛽𝑚𝑖𝑛

 . (3-6) 

  It is clear that likelihood function 𝐿𝐹𝑗 is conditional to given values of β, c and d. 

 

3.2.  Calculations of reliability and next inspection interval 

 

  The reliability of the entire system considering a distribute function of uncertain parameters β, c 

and d is calculated by an integral over whole variable space as following: 

�̃�𝑀
̅̅ ̅̅ (𝑡∗) = ∫ ∫ ∫ �̃�𝑀(𝑡∗|𝛽, 𝑐, 𝑑) ∙ 𝑓𝑗(𝛽, 𝑐, 𝑑)d𝛽d𝑐d𝑑

𝑑𝑚𝑎𝑥

𝑑𝑚𝑖𝑛

𝑐𝑚𝑎𝑥

𝑐𝑚𝑖𝑛

𝛽𝑚𝑎𝑥

𝛽𝑚𝑖𝑛

 , (3-7) 

where 

�̃�𝑀(𝑡∗|𝛽, 𝑐, 𝑑) = [∏ 𝑅𝑚(𝑡∗: Rep. )

𝑀1

𝑚=1

] ∙ [∏ 𝑅𝑚(𝑡∗: No. )

𝑀2

𝑚=1

] . (3-8) 

  Eq. (3-8) is a minor change of eq. (2-29) which computing reliabilities at all discrete points over the 

domains of all uncertain parameters. The same discretization is applied to all uncertain parameters to 

compute likelihood function eq. (3-5) and posterior joint density function eq. (3-6). The integrations 
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in Eq. (3-6) and (3-7) are also computed by numerical integral. 

  Assuming that the entire system must maintain its reliability above a pre-specified design level 

Rdesign throughout its service life, the reliability at time t* after an inspection performed at Tj should 

satisfied that: 

�̃�𝑀
̅̅ ̅̅ (𝑡∗) ≥  𝑅design . (3-9) 

  The way to find the next inspection time is that to increase t* by a time increment step by step and 

find the maximum value satisfied eq. (3-9).  

  The numerical simulation after inspection Tj (j =0, 1, …) are performed as follows: 

(1) First stage, the virtual system starts to simulate the initiation of fatigue cracks, propagation of 

cracks and so on. True values of all parameters are used in this stage. These results are treated 

as real events happened in the virtual system. 

(2) Second stage, estimate the reliability of entire system by probabilistic method, without knowing 

any information from first stage. The values of uncertain parameters are unknown, so the 

posterior joint density function of these parameters at time Tj are used in this stage. The 

maximum t* which can satisfy eq. (3-9) is found and next inspection time Tj+1 is set to this t*. 

(3) Virtual inspection is applied to the system at time Tj+1, according to the results from first stage. 

(4) Inspection results are used to compute the likelihood function and posterior joint density 

function at time Tj+1 . 

(5) Go back to step 1, do numerical simulation for next inspection. 

 

3.3.  Numerical results of single uncertain parameter 

 

  As described above, three uncertain parameters have been considered: β, c and d. First, only single 

uncertain parameter is discussed. 

 

3.3.1. Case 1: uncertain parameter β 

 

  The non-periodic inspection scheme with an uncertain parameter β is simulated by the approach 

presented in this study. The inspection schedule is shown in Table 3-1. The intervals between 

consequent inspections become smaller and smaller in most cases. However, because of the change of 

probability distribution function of parameter β, the intervals sometimes become longer.  

  The change of probability distribution function of parameter β is shown in Fig. 3-1. The prior 

distribution function is uniform and the posterior distribution function converge to the true value 

gradually. Without knowing the exact value of uncertain parameter β, it is possible to schedule the 

inspection scheme using Bayesian estimation method. 

  Reliabilities for the non-periodic inspections with an uncertain parameter β are shown in Fig. 3-2, 
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and results show that the reliabilities of entire system maintains the required minimum level of 0.8 

throughout the whole service life. 

  It should be pointed out that the results show here is only one example of this case. Statistical 

analysis are performed in chapter 4. 

 

3.3.2. Case 2: uncertain parameter c 

 

  The non-periodic inspection scheme with an uncertain parameter c is simulated by the approach 

presented in this study. The inspection schedule is shown in Table 3-2. The intervals between 

consequent inspections become smaller and smaller in most cases. However, because of the change of 

probability distribution function of parameter c, the intervals sometimes become longer.  

  The change of probability distribution function of parameter c is shown in Fig. 3-3. The prior 

distribution function is uniform and the posterior distribution function converge to the true value 

gradually. The peak of density function of parameter c is only 0.1, which is lower than the case of 

parameter β. Although the value of uncertain parameter cannot concentrate to the true value better, it 

is still possible to schedule the inspection scheme using Bayesian estimation method. 

  Reliabilities for the non-periodic inspections with an uncertain parameter c are shown in Fig. 3-4, 

and results show that the reliabilities of entire system maintains the required minimum level of 0.8 

throughout the whole service life. Statistical analysis are performed in chapter 4. 

 

3.3.3. Case 3: uncertain parameter d 

 

  The non-periodic inspection scheme with an uncertain parameter d is simulated by the approach 

presented in this study. The inspection schedule is shown in Table 3-3. The intervals between 

consequent inspections become smaller and smaller in most cases. 

  The change of probability distribution function of parameter d is shown in Fig. 3-5. The prior 

distribution function is uniform and the posterior distribution function converge to the true value 

gradually. The peak of density function of parameter d is lowest in three cases. Although the value of 

uncertain parameter cannot concentrate to the true value better, the inspection intervals are still 

reasonable. Without knowing the exact value of uncertain parameter d, it is possible to schedule the 

inspection scheme using Bayesian estimation method. 

  Reliabilities for the non-periodic inspections with an uncertain parameter d are shown in Fig. 3-6, 

and results show that the reliabilities of entire system maintains the required minimum level of 0.8 

throughout the whole service life. Statistical analysis are performed in chapter 4. 
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Table 3-1 Inspection schedule for the case 1 (uncertain parameter β) 

Inspection no. Inspection time (cycles) Inspection interval (cycles) 

1 8590 8590 

2 13240 4650 

3 16210 2970 

4 18850 2640 

5 21250 2400 

6 23430 2180 

7 25080 1650 

8 25970 890 

9 26690 720 

10 27470 780 

11 28270 800 

12 29090 820 

13 29780 690 

 

 

Fig. 3-1 Change of probability distribution function (uncertain parameter β) 

 

 

Fig. 3-2 Reliability for the case 1 (uncertain parameter β) 
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Table 3-2 Inspection schedule for the case 2 (uncertain parameter c) 

Inspection no. Inspection time (cycles) Inspection interval (cycles) 

1 8740 8740 

2 14480 5740 

3 17540 3060 

4 19670 2130 

5 21280 1610 

6 23010 1730 

7 24450 1440 

8 25680 1230 

9 26760 1080 

10 27720 960 

11 28590 870 

12 29380 790 

 

 

Fig. 3-3 Change of probability distribution function (uncertain parameter c) 

 

 

Fig. 3-4 Reliability for the case 2 (uncertain parameter c) 
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Table 3-3 Inspection schedule for the case 3 (uncertain parameter d) 

Inspection no. Inspection time (cycles) Inspection interval (cycles) 

1 8740 8740 

2 14470 5730 

3 17550 3080 

4 19710 2160 

5 21490 1780 

6 22970 1480 

7 24210 1240 

8 25310 1100 

9 26300 990 

10 27250 950 

11 28170 920 

12 29040 870 

13 29850 810 

 

 

Fig. 3-5 Change of probability distribution function (uncertain parameter d) 

 

 

Fig. 3-6 Reliability for the case 3 (uncertain parameter d) 
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3.4.  Numerical results of multiple uncertain parameters 

 

  Two of the three parameters β, c and d are supposed to be uncertain in this section. All combinations 

have been discussed.  

 

3.4.1. Case 4: uncertain parameters β and c 

 

  The problem of non-periodic inspection scheme with two uncertain parameters β and c is solved by 

applying Bayesian estimation to the uncertain parameters. The prior distribution function is assumed 

to be a joint uniform distribution function. The posterior distribution function is computed as the 

product of the prior function and the likelihood function which derived from the information of 

inspection results. The change of probability distribution function of parameters β and c is shown in 

Fig. 3-7.  The peak of the distribution function (36000 and 2.1E-4) is not always converge to the true 

value (40000 and 1.6E-4) because of local minimum problem and the lack of information. However, 

Bayesian estimation method gives an approximate estimation of the possible range of the parameters. 

Further discussions using statistical analysis are presented in chapter 4. 

 

3.4.2. Case 5: uncertain parameters β and d 

 

  The problem of non-periodic inspection scheme with two uncertain parameters β and d is solved by 

applying Bayesian estimation to the uncertain parameters. The prior distribution function is assumed 

to be a joint uniform distribution function. The posterior distribution function is computed as the 

product of the prior function and the likelihood function which derived from the information of 

inspection results. The change of probability distribution function of parameters β and d is shown in 

Fig. 3-8.  The peak of the distribution function (38000 and 38) is not always converge to the true 

value (40000 and 40) because of local minimum problem and the lack of information. However, 

Bayesian estimation method gives an approximate estimation of the possible range of the parameters. 

Further discussions using statistical analysis are presented in chapter 4. 

 

3.4.3. Case 6: uncertain parameters c and d 

 

  The problem of non-periodic inspection scheme with two uncertain parameters c and d is solved by 

applying Bayesian estimation to the uncertain parameters. The prior distribution function is assumed 

to be a joint uniform distribution function. The posterior distribution function is computed as the 

product of the prior function and the likelihood function which derived from the information of 
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inspection results. The change of probability distribution function of parameters c and d is shown in 

Fig. 3-9.  The peak of the distribution function (1.7E-4 and 34) is not always converge to the true 

value (1.6E-4 and 40) because of local minimum problem and the lack of information. However, 

Bayesian estimation method gives an approximate estimation of the possible range of the parameters. 

Further discussions using statistical analysis are presented in chapter 4. 

 

3.5.  Summary 

 

  A Bayesian method is introduced to optimize the non-periodic inspection intervals with uncertain 

parameters. Contents and results are summarized as follows: 

(1) Bayesian method is applied to deal with the uncertainty of parameters in non-periodic 

inspection scheme. Inspection intervals are estimated by the Bayesian approach and the 

estimated reliability of a multi-elements system maintains a pre-set level. 

(2) The inspection schedule resulting from simulation of single uncertain parameter is presented. 

The intervals between consequent inspections become shorter as a function of time. The peak 

values of the posterior density functions are very close to the true values of the uncertain 

parameters. 

(3) The inspection schedule resulting from simulation of two uncertain parameters is presented. 

Because of the local minimum problem and the lack of information, the estimation of the true 

values of uncertain parameters consists large error sometimes. 
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(a) Prior probability density functions 

 

(b) Probability density functions after inspection 6 

 

(c) Probability density functions after inspection 12 

 

Fig. 3-7 Change of probability distribution function (uncertain parameters β and c) 
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(a) Prior probability density functions 

 

(b) Probability density functions after inspection 6 

 

(c) Probability density functions after inspection 12 

 

Fig. 3-8 Change of probability distribution function (uncertain parameters β and d) 
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(a) Prior probability density functions 

 

(b) Probability density functions after inspection 6 

 

(c) Probability density functions after inspection 11 

 

Fig. 3-9 Change of probability distribution function (uncertain parameters c and d) 
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4. Statistical analysis 

 

  The approach presented in this study is based on probabilistic analysis. The initiation time of a 

fatigue crack is considered to be a random variable following the Weibull distribution. Furthermore, 

the parameters β, c and d which are involving in these equations may also be uncertain. The simulation 

results are not static but dynamic thus statistical analysis are necessary to evaluate the effect of this 

approach as well as the Bayesian estimation. 

 

4.1.  Cost reduction 

 

  The system consists of several components, each of which is subjected to soft failure. Soft failures 

of each component do not cause the system to stop functioning, but increase the system operating costs 

and are detected only if inspection is performed. The system’s expected total cost associated with a 

given inspection scheme includes inspection costs, repair costs, and the penalty costs of a soft failure. 

The objective is to determine the optimal inspection scheme which minimizes system expected total 

cost. 

 

4.1.1. Statistical analysis of non-periodic inspection with true value 

 

  In order to estimate the expected total cost of a given inspection scheme, statistical analysis of non-

periodic inspection with true value are performed. The results of expected number of inspection times, 

number of failure elements and number of repair are shown in Table 4-1. Different sample number 

from 500 to 2000 are used and results show that 1000 or more samples are enough to obtain good 

statistical analysis results especially for the number of inspection times. 

 

Table 4-1 Statistical results for different number of sample (non-periodic, true value) 

Number of 

sample  

Number of inspections Number of failure Number of repair 

Average SD Average SD Average SD 

500 

12.98 0.15 0.81 0.89 7.09 2.48 

12.98 0.18 0.90 0.97 7.30 2.58 

12.98 0.15 0.85 0.92 7.22 2.47 

1000 
12.98 0.16 0.85 0.93 7.19 2.53 

12.98 0.18 0.92 0.97 7.25 2.55 

2000 12.98 0.17 0.88 0.95 7.22 2.54 
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  From the results in Table 4-1, one can find that the standard deviation of number of inspection is 

small (less than 1%). But on the other hand, the standard deviation of number of failure elements and 

number of repair is very large. This is because that the initiation of fatigue crack as well as failure rate 

are randomly distributed in a large range.  

 

4.1.2. Statistical analysis of different inspection schemes 

 

  Different inspection schemes are evaluated by statistical analysis including periodic inspection and 

non-periodic inspection. To decrease the inspection costs, a partial non-periodic inspection scheme is 

considered. This is easy to perform by ignoring inspection of the elements with higher reliability due 

to a recent replacement. Fig. 4-1 shows the reliability of single element during the service life. All 

reliabilities of single element are the same in the beginning. The curve separates when an element was 

replaced. For a full inspection scheme that inspect all elements, this curve will reunion at the time of 

next inspection. But for a partial inspection scheme introduced here, the element with higher reliability 

exempt from inspection in order to decrease the inspection costs. Both the reliability of a single 

element and that of entire system are kept above the required level in the inspection scheme. 

 

Fig. 4-1 Reliability of single element for partial inspection scheme (parameter with true value) 

  The results of expected number of inspection times, number of failure elements and number of 

repair for different inspection scheme are shown in Table 4-2. For periodical inspection scheme, the 

number of failure decreases a little bit when inspection interval decreases, at the same time, the number 

of repair or replacement increase a little bit. The costs of these two parts cancel out each other and 

keep the sum of costs nearly a constant. In all cases shown in Table 4-2, the number of failure and 

repair are nearly the same. It is easy to conclude that the total expected costs mainly depend on the 

inspection cost only.  

  The inspection cost (number of inspections * number of elements) for some of the inspection 

schemes are shown in Fig. 4-2, and the minimum reliabilities are also compared in Fig. 4-3. The effect 

of decreasing inspection cost is great when applying non-periodic inspection. While at the same time, 
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the minimum reliabilities of non-periodic inspection keep higher. The partial inspection scheme is 

possible to apply with nearly the same reliability with a full inspection scheme. The difference of 

inspection cost between these two schemes is only about 5%. 

Table 4-2 Statistical results for different inspection scheme (1000 samples) 

Inspection type 
Number of inspections Number of failure Number of repair 

Average SD Average SD Average SD 

Periodic 2500  12 0 0.99 0.97 7.39 2.50 

Periodic 2000  15 0 0.91 0.95 7.32 2.53 

Periodic 1500 20 0 0.86 0.95 7.55 2.56 

Periodic 1000  30 0 0.74 0.87 7.60 2.61 

Periodic 750 40 0 0.77 0.84 7.81 2.68 

Non-periodic 12.98 0.17 0.88 0.95 7.22 2.54 

Partial inspect  12.38 0.27 0.84 0.91 7.19 2.51 

 

 

Fig. 4-2 Comparison of inspection cost of different inspection scheme 

 

 

Fig. 4-3 Comparison of reliability of different inspection scheme 
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4.2.  Effect of Bayesian method 

 

  Bayesian updating modified the distribution function of uncertain parameters according to the 

inspection results. That is to say, the result of one simulation is a casual result. It is necessary to 

performed statistical analysis to evaluate the effect of Bayesian approach using in this study. 

 

4.2.1. Statistical analysis of different cases of uncertain parameters 

 

  In order to estimate the effective of Bayesian estimation of different cases of uncertain parameters, 

statistical analysis are performed. The average values and standard deviations of the inspection number 

and peak values of parameters are shown in Table 4-3 ~ Table 4-8. Different sample number from 500 

to 2000 are used and results show that 1000 or more samples are enough to obtain good statistical 

analysis results for all cases. 

  For the case of uncertain parameter β, as shown in Table 4-3, the average result of inspection number 

from 2000 samples is slightly bigger than the number from true value. The average peak value of 

parameter β gives a good estimation of the true value. However, the standard deviation of inspection 

number is large which means the distribution range of the results of inspection number is very wide. 

The results are statically good but affect by accidental factor easily. 

  For the case of uncertain parameter c, as shown in Table 4-4, the average result of inspection number 

from 2000 samples is smaller than the number from true value. The average peak value of parameter 

c is 20% larger than the true value, thus an underestimate happens to the inspection number. The 

Bayesian estimation falls into a local minimum in the case of uncertain parameter c. 

  For the case of uncertain parameter d, as shown in Table 4-5, the average result of inspection number 

from 2000 samples is coincident with the number from true value. The estimation of parameter d is 

not good enough as the standard deviation is larger than 25%. However, because parameter d does not 

affect the reliability at all, the result of inspection number is extremely good. 

  For the case of two uncertain parameters, as shown in Table 4-6 , Table 4-7 and Table 4-8, results 

change depending on which parameter is uncertain. When parameter β is uncertain, the standard 

deviation of inspection number appears to be too large. When parameter c is uncertain, the inspection 

number will be underestimated. When parameter d is uncertain, the estimation of parameter d is not 

good enough. In the case of multi-parameters, two or three above problems will arise. Considering the 

local minimum problem and the lack of information, it should be concluded that the problem of 

multiple uncertain parameters is hard to solve. 
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Table 4-3 Statistical results for different number of sample (uncertain parameter β) 

Number of 

sample  

Number of inspections Parameter β 

Average SD Average SD 

500 

13.62 2.72 40900 4580 

13.49 2.66 41260 4560 

13.66 2.94 41140 4980 

1000 
13.56 2.69 41080 4580 

13.65 2.92 41100 5000 

2000 13.60 2.81 41080 4800 

True value 12.98 0.17 40000 --- 

 

Table 4-4 Statistical results for different number of sample (uncertain parameter c) 

Number of 

sample  

Number of inspections Parameter c 

Average SD Average SD 

500 

11.59 1.61 1.972E-04 2.96E-05 

11.71 1.69 1.964E-04 2.77E-05 

11.64 1.53 1.957E-04 2.70E-05 

1000 
11.65 1.65 1.968E-04 2.86E-05 

11.66 1.61 1.959E-04 2.84E-05 

2000 11.66 1.63 1.964E-04 2.85E-05 

True value 12.98 0.17 1.6E-04 --- 

 

Table 4-5 Statistical results for different number of sample (uncertain parameter d) 

Number of 

sample  

Number of inspections Parameter d 

Average SD Average SD 

500 

12.79 0.49 39.02 11.28 

12.78 0.48 38.38 11.08 

12.78 0.51 38.54 10.78 

1000 
12.78 0.48 38.7 11.18 

12.79 0.51 39.14 11.16 

2000 12.79 0.49 38.92 11.18 

True value 12.98 0.17 40 --- 
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Table 4-6 Statistical results for different number of sample (uncertain parameter β and c) 

Number of 

sample  

Number of inspections Parameter β Parameter c 

Average SD Average SD Average SD 

500 

11.48 2.04 42580 5140 2.040E-04 2.65E-05 

11.51 1.98 42340 4940 2.041E-04 2.40E-05 

11.51 2.01 42380 4860 2.037E-04 2.52E-05 

1000 
11.49 2.01 42460 5040 2.041E-04 2.53E-05 

11.52 2.03 42500 5000 2.025E-04 2.59E-05 

2000 11.51 2.02 42480 5020 2.033E-04 2.56E-05 

True value 12.98 0.17 40000 --- 1.6E-04 --- 

 

Table 4-7 Statistical results for different number of sample (uncertain parameter β and d) 

Number of 

sample  

Number of inspections Parameter β Parameter d 

Average SD Average SD Average SD 

500 

13.10 2.56 41220 4960 39.5 11.8 

13.48 2.92 41160 4900 38.6 11.24 

13.33 2.75 41200 4940 38.58 11.14 

1000 
13.29 2.75 41200 4940 39.06 11.54 

13.35 2.69 41200 4880 38.1 11.22 

2000 13.32 2.72 41200 4920 38.58 11.38 

True value 12.98 0.17 40000 --- 40 --- 

 

Table 4-8 Statistical results for different number of sample (uncertain parameter c and d) 

Number of 

sample  

Number of inspections Parameter c Parameter d 

Average SD Average SD Average SD 

500 

11.15 1.44 2.107E-04 3.08E-05 31.52 10.9 

11.38 1.57 2.078E-04 3.28E-05 32.56 11.36 

11.27 1.51 2.098E-04 3.15E-05 31.7 11.5 

1000 
11.26 1.51 2.092E-04 3.18E-05 32.04 11.14 

11.21 1.51 2.100E-04 3.23E-05 31.88 11.32 

2000 11.24 1.51 2.096E-04 3.21E-05 31.96 11.24 

True value 12.98 0.17 1.6E-04 --- 40 --- 
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Table 4-9 Statistical results of error form Bayesian estimation (2000 samples) 

Uncertain 

Parameters 

No. of inspections Estimated β Estimated c Estimated d 

Average Error Average Error Average Error Average Error 

True value  12.98 --- 40000 --- 1.60E-4 --- 40 --- 

β 13.60 4.8% 41080 2.7% --- --- --- --- 

c 11.66 -10.2% --- --- 1.96E-04 22.8% --- --- 

d 12.79 -1.5% --- --- --- --- 38.92 -2.7% 

β and c 11.51 -11.3% 42480 6.2% 2.03E-04 27.1% --- --- 

β and d 13.32 2.6% 41200 3.0% --- --- 38.58 -3.6% 

c and d 11.24 -13.4% --- --- 2.10E-04 31.0% 31.96 -20.1% 

 

  Statistical results of error form Bayesian estimation for all cases are summarized in Table 4-9. 

Concerning the choice and effective of uncertain parameters, conclusions are made as follows: 

1. It is better to have only one uncertain parameter than multiple uncertain parameters. 

2. Parameter d should be treat as fixed parameter other than uncertain one because it does not 

affect the inspection interval and also easy to decided. 

3. When parameter β is treated as uncertain, average of the estimations are good. Both number of 

inspection and parameter itself are estimated within 5% error. 

4. When parameter c is treated as uncertain, local minimum problem exists. More information is 

necessary to improve the Bayesian estimation. 

 

4.2.2. Statistical analysis of different prior density functions 

 

  The inspection intervals predicted by presented method depend on the distribution density functions 

of uncertain parameters. Especially for the first several inspections when there is no enough 

information to estimate the proper range of parameters, the prior density function dominates the length 

of the inspection intervals. There are two cases of the prior knowledge for parameters: one is that only 

lower bound and upper bound are known, the prior density function is a uniform distribution; the other 

is that the center value is known, and the prior density function is a normal distribution has a mean 

value known. 

  The statistical results of four types of prior density functions for uncertain parameter β are compared 

in Table 4-10. The upper three rows are the results when parameter β has a single value, and the lower 

four rows are the results when Bayesian method is used to update the distribution functions. 

Considering the true value of parameter is β = 40000, the right answer of number of inspection should 

be 12.98. When wrong value of parameter β is used, the errors are larger than 15% as shown in row 2 
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and 3. One the other hand, when Bayesian updating is applied, the wrong prior knowledge is revised 

and the errors are smaller than 5% except one case. The peak value of parameter β is estimated in good 

accuracy for all cases. 

  The statistical results of four types of prior density functions for uncertain parameter c are compared 

in Table 4-11. The upper three rows are the results when parameter c has a single value, and the lower 

four rows are the results when Bayesian method is used to update the distribution functions. 

Considering the true value of parameter is c = 1.6E-4, the right answer of number of inspection should 

be 12.98. When wrong value of parameter c is used, the errors are larger than 12% as shown in row 2 

and 3. One the other hand, when Bayesian updating is applied, the wrong prior knowledge is revised 

and the errors are smaller than 12%. The peak value of parameter c is overestimated in all cases 

because of the local minimum problem. As a result of that, the number of inspection is underestimated. 

However, improvements are still can be found by using Bayesian method even when prior knowledge 

is wrong. 

 

Table 4-10 Effect of prior information (Uncertain parameter β, 2000 samples) 

Conditions 
Number of inspections Peak of estimated β 

Average Error Average Error 

True value β = 40000 12.98 --- --- --- 

Wrong value β = 36000 16.35 26.0% --- --- 

Wrong value β = 44000 10.66 -17.9% --- --- 

Normal dist. μ = 36000 14.59 12.4% 40060 0.2% 

Normal dist. μ = 40000 13.56 4.5% 40460 1.2% 

Normal dist. μ = 44000 12.52 -3.5% 41180 3.0% 

Uniform distribution of β 13.60 4.8% 41080 2.7% 

 

Table 4-11 Effect of prior information (Uncertain parameter c, 2000 samples) 

Conditions 
Number of inspections Peak of estimated β 

Average Error Average Error 

True value c = 1.60E-4 12.98 --- --- --- 

Wrong value c = 1.4E-4 14.96 14.9% --- --- 

Wrong value c = 1.8E-4 11.4 -12.2% --- --- 

Normal dist. μ = 1.4E-4 12.57 -3.2% 1.77E-04 10.6% 

Normal dist. μ = 1.6E-4 12.04 -7.2% 1.83E-04 14.2% 

Normal dist. μ = 1.8E-4 11.43 -11.9% 1.90E-04 18.4% 

Uniform distribution of c 11.66 -10.2% 1.96E-04 22.8% 
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4.2.3. Effect of Bayesian method when parameters unknown 

 

  Bayesian method can solve the problem when parameters are uncertain. The effect of Bayesian 

method when parameters are unknown is evaluated by comparing the estimated number of inspections 

in six cases to the "right answer" when all parameters are fixed. 

  The comparison of inspection number (unknown parameter β) is shown in Fig. 4-4. A ±10% range 

beside the right answer when β equal to right value 40000 is indicated in the figure. The answers when 

a wrong value of β is used are out of ±10% range, while Bayesian method can obtain an answer within 

10% error. The comparison of inspection number (unknown parameter c) is shown in Fig. 4-5. A ±10% 

range beside the right answer when c equal to right value 1.6E-4 is indicated in the figure. The answers 

when a wrong value of c is used are out of ±10% range. The Bayesian method gives answers which 

are slightly underestimated but still acceptable when parameter c is unknown. 

 

 

Fig. 4-4 Comparison of inspection number (True, wrong values and Bayesian method for β) 

 

 

Fig. 4-5 Comparison of inspection number (True, wrong values and Bayesian method for c) 
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4.3.  Reliability of estimated reliability 

 

  The reliabilities discussed in this study is an estimated probability results. It is necessary to evaluate 

the estimated reliability by a means of reliability evaluation. 

 

4.3.1. Evaluation of estimated reliability 

 

  The estimated reliability is the reliability computed by knowing only inspection results using a 

probability method. Because the "truth" is a simulated virtual result, one can computed the true 

reliability of the system by knowing initiation information of fatigue cracks. Fig. 4-6 shows the 

comparison of estimated reliability and true reliability of entire system by simulation results with all 

parameters fixed. While all estimated reliability kept above 0.8 throughout the service life, the true 

reliability varied sometimes as low as 0.7. 

 

Fig. 4-6 Comparison of the estimated reliability and true reliability (True parameters) 

 

4.3.2. Statistical analysis for reliability of estimated reliability 

 

  A parameter is defined as the reliability of estimated reliability (Ror.) at each inspection points as 

follows: 

Ror. = {
1                             when  𝑅true  ≥  𝑅design0.8

𝑅true/𝑅design       when  𝑅true  <  𝑅design0.8
 . (4-1) 

  Several cases of simulations are performed including: (1) True value of parameters, (2) True value 

of parameters by partial inspection scheme, (3) Bayesian estimation of parameter β, (4) Bayesian 

estimation of parameter β by partial inspection scheme, (5) Bayesian estimation of parameter β and c, 

and (6) Bayesian estimation of parameter β and c by partial inspection scheme. The reliabilities of 

estimated reliability (Ror.) are shown in Table 4-12 and Fig. 4-7. It is clear that no matter using true 

value of parameters or using Bayesian estimation for uncertain parameters, the average of Ror. keeps 
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above 0.9 and the minimum of Ror. keeps above 0.6. Also, partial inspection scheme does not 

influence the reliability. 

 

Table 4-12 Statistical results of reliability of estimated reliability (2000 samples) 

Conditions 
Average of Ror. Minimum of Ror. 

Mean value SD Mean value SD 

True values 0.925 0.052 0.656 0.185 

True values, partial Insp. 0.924 0.052 0.654 0.184 

Bayesian β 0.928 0.038 0.617 0.161 

Bayesian β, partial Insp. 0.931 0.036 0.624 0.159 

Bayesian β,c 0.904 0.057 0.610 0.172 

Bayesian β,c, partial Insp. 0.905 0.054 0.607 0.169 

 

 

Fig. 4-7 Comparison of reliability of estimated reliability (Ror.) 

 

4.4.  Summary 

 

  The advanced Bayesian approach is introduced to optimize the non-periodic inspection intervals. 

Statistical analysis are performed to evaluate the effect of the approach and the Bayesian updating. 

Contents and results are summarized as follows: 

1. It is possible to greatly reduce the system expected total cost by optimize the non-periodic 

inspection intervals using Bayesian approach, comparing with periodic inspection. 

2. The selection of uncertain parameters is important and single uncertain parameter is preferred. 

Bayesian method works better if more information is available. 

3. Comparison between estimated reliability and true reliability is performed by statistical 

analysis. The reliability of the estimated reliability is larger than 0.9. The presented approach 

is applicable to optimization of inspection intervals because of its high reliability. 
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5. Bayesian method using conditional probability 

 

  In chapter 3, the prior density function is supposed to be the possible distribution at the time of the 

initiation of service and the likelihood function of an element is considered from service start. This is 

not convenient when not all the historical information of inspections are available and simulation from 

the middle of a service life is needed. Bayesian analysis method using conditional probability can 

solve this problem. It is not necessary to acquire all information of inspections from the service starts 

when using conditional probability. However, the information from the time of last repair or 

replacement of the element are still necessary. 

 

5.1.  Conditional probability and reliability 

 

  The conditional probability as well as the reliability computations are mostly the same as chapter 2 

with minor change in forms. 

 

5.1.1. The probabilities in the condition of repaired at (j-1)-th inspection 

 

(1) Event AY and probabilities of that a failure was found at j-th inspection 

Probability of event AY can be derived from eq. (2-23) as follows: 

𝑃{𝐴𝑌: 𝑗|Rep𝑗−1} = {1 − 𝐹𝑐(𝑇𝑗 − 𝑇𝑗−1|𝛽)} ∙ {1 − 𝑈(𝑇𝑗 − 𝑇𝑗−1)}

+ ∫ 𝑓𝑐(𝑡 − 𝑇𝑗−1|𝛽) ∙ {1 − 𝑈(𝑡 − 𝑇𝑗−1)}d𝑡
𝑇𝑗

𝑇𝑗−1

+ ∫ 𝑓𝑐(𝑡 − 𝑇𝑗−1|𝛽) ∙ 𝑈(𝑡 − 𝑇𝑗−1) ∙ {1 − 𝑉(𝑇𝑗 − 𝑡)}d𝑡 ,
𝑇𝑗

𝑇𝑗−1

 

(5-1) 

where Rep𝑗−1 represents the event that the element was repaired at (j-1)-th inspection. 

 

(2) Event BY and probabilities of that a crack was found at j-th inspection 

Probability of event BY can be derived from eq. (2-24) as follows: 

𝑃{𝐵𝑌(𝑎𝑗): 𝑗|Rep𝑗−1} = 𝑓𝑐(𝑡𝑐 − 𝑇𝑗−1|𝛽) |
d𝑡𝑐

d𝑎𝑗
| ∆𝑎 ∙ 𝑈(𝑡𝑐 − 𝑇𝑗−1) ∙ 𝑉(𝑇𝑗 − 𝑡𝑐) ∙ 𝐷(𝑎𝑗|𝑑). (5-2) 

 

(3) Event CY and probabilities of that nothing was found at j-th inspection 

Probability of event CY can be derived from eq. (2-25) as follows: 
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𝑃{𝐶𝑌: 𝑗|Rep𝑗−1} = {1 − 𝐹𝑐(𝑇𝑗 − 𝑇𝑗−1|𝛽)} ∙ 𝑈(𝑇𝑗 − 𝑇𝑗−1)

+ ∫ 𝑓𝑐(𝑡 − 𝑇𝑗−1|𝛽) ∙ 𝑈(𝑡 − 𝑇𝑗−1) ∙ 𝑉(𝑇𝑗 − 𝑡)
𝑇𝑗

𝑇𝑗−1

∙ {1 − 𝐷(𝑎(𝑇𝑗 − 𝑡|𝑐)|𝑑)}d𝑡 . 

(5-3) 

 

5.1.2. The probabilities in the condition of not repaired at (j-1)-th inspection 

 

(1) Event AN and probabilities of that a failure was found at j-th inspection 

Probability of event AY satisfied the following equation: 

𝑃{𝐴𝑁: 𝑗, 𝑙|No𝑗−1, 𝑙} =
𝑃{𝐴𝑁: 𝑗, 𝑙 ∩ No𝑗−1, 𝑙}

𝑃{No𝑗−1, 𝑙}
 , (5-4) 

where No𝑗−1 represents the event that the element was not repaired at (j-1)-th inspection, and 

l shows that last repair or replacement occurred at Tl. The numerator 𝑃{𝐴𝑁: 𝑗, 𝑙 ∩ No𝑗−1, 𝑙} of 

eq. (5-4) has the same form as eq. (2-23) 𝑃{𝐴: 𝑗, 𝑙} but with the restriction that 𝑙 ≠ (𝑗 − 1). 

The denominator 𝑃{No𝑗−1, 𝑙} of eq. (5-4) can be computed as 𝑃{𝐶: 𝑗 − 1, 𝑙} from eq. (2-25).  

 

(2) Event BN and probabilities of that a crack was found at j-th inspection 

Probability of event BY satisfied the following equation: 

𝑃{𝐵𝑁(𝑎𝑗): 𝑗, 𝑙|No𝑗−1, 𝑙} =
𝑃{𝐵𝑁(𝑎𝑗): 𝑗, 𝑙 ∩ No𝑗−1, 𝑙}

𝑃{No𝑗−1, 𝑙}
 . (5-5) 

The numerator 𝑃{𝐵𝑁(𝑎𝑗): 𝑗, 𝑙 ∩ No𝑗−1, 𝑙}  of eq. (5-5) has the same form as eq. (2-24) 

𝑃{𝐵(𝑎𝑗): 𝑗, 𝑙} but with the restriction that 𝑙 ≠ (𝑗 − 1). 

 

(3) Event CN and probabilities of that nothing was found at j-th inspection 

Probability of event CY satisfied the following equation: 

𝑃{𝐶𝑁: 𝑗, 𝑙|No𝑗−1, 𝑙} =
𝑃{𝐶𝑁: 𝑗, 𝑙 ∩ No𝑗−1, 𝑙}

𝑃{No𝑗−1, 𝑙}
 . (5-6) 

The numerator 𝑃{𝐶𝑁: 𝑗, 𝑙 ∩ No𝑗−1, 𝑙} of eq. (5-6) has the same form as eq. (2-25) 𝑃{𝐶: 𝑗, 𝑙} 

but with the restriction that 𝑙 ≠ (𝑗 − 1). 

 

5.1.3. Reliability computation 

 

  The reliability of elements at time instant t* after time of inspection Tj, can be calculated the same 

as shown in eq. (2-26) and (2-27). 
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5.2.  Likelihood function and posterior probability density function 

 

5.2.1. Likelihood function 

 

  The likelihood function for Bayesian analysis method using conditional probability needs only the 

information of inspection from last repair or replacement. Thus eq. (3-5), the likelihood function for 

element m resulting from the j-th inspection is changed to: 

𝐿𝐹𝑗
(𝑚)

𝐸𝑗−1 = 𝑃𝑚{𝑌: 𝑗|Rep𝑗−1 }  or 𝑃𝑚{𝑋: 𝑗, 𝑙|No𝑗−1, 𝑙}. (5-7) 

  In eq. (5-7), Y stands for either even AY, BY or CY, X stands for either AN, BN or CN depending on the 

result of the j-th inspection for element m. 𝐸𝑗−1 stands for either "Replace" or "No replace" at time 

of (j-1)-th inspection. The probability Pm{*} refers to eq. (5-1) to (5-6). 

  The likelihood function LFj for the entire system as a result of the j-th inspection is calculated as: 

𝐿𝐹𝑗𝐸𝑗−1 = ∏ 𝐿𝐹𝑗
(𝑚)

𝐸𝑗−1

𝑀

𝑚=1

 , (5-8) 

where M is the total number of elements in the system. 

 

5.2.2. Posterior probability density function 

 

  The posterior joint density function of parameters β, c and d after the j-th inspection is given by: 

𝑓𝑗(𝛽, 𝑐, 𝑑) =
𝐿𝐹𝑗𝐸𝑗−1 ∙ 𝑓𝑗−1(𝛽, 𝑐, 𝑑)

∫ ∫ ∫ (Numerator)d𝛽d𝑐d𝑑
𝑑𝑚𝑎𝑥

𝑑𝑚𝑖𝑛

𝑐𝑚𝑎𝑥

𝑐𝑚𝑖𝑛

𝛽𝑚𝑎𝑥

𝛽𝑚𝑖𝑛

 . (5-9) 

  It is clear that likelihood function 𝐿𝐹𝑗 is conditional to given values of β, c and d. 

 

5.3.  Numerical results 

 

  Numerical simulation is performed using the conditional probability approach. The inspection 

schedule are shown in Table 5-1. Reliabilities for the non-periodic inspections are shown in Fig. 5-1, 

where figure (a) is the reliability of a single element and (b) is the reliability of entire system with 50 

elements. The result is basically the same as the non-periodic inspection scheme in chapter 2 because 

they are the answer to a same problem. 

  By using conditional probability, the Bayesian approach can be applied not only from the service 

initiation but also from the middle of service. It gives more flexibility to this method such as that the 

continuity of the Bayesian updating can be applied more easily from different systems. That is to say, 
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when two systems are working in exactly same condition, Bayesian updating may be applied 

interactively between two systems. More information from inspections will improve the Bayesian 

updating and its convergence. 

  Examples are shown by applying Bayesian updating in four sequent systems. For simplification, 

four systems are applied in order instead of interactively. The last posterior density function of the first 

systems is used as the prior density function of the second system. And then the posterior density 

function of second system is transferred to the third system, then to the forth.  

  The change of probability distribution function of uncertain parameter β is shown in Fig. 5-2. The 

results of inspection number and peak value of parameter after Bayesian estimation from each system 

is listed in Table 5-2. The probability distribution function converges to the true value better and more 

concentrate after multi-system updating. Due to the concentration of distribution function of parameter 

to the true value, the inspection number converge to statistic average results of true value. 

  The change of probability distribution function of uncertain parameter c is shown in Fig. 5-3. The 

results of inspection number and peak value is listed in Table 5-3. The estimated results of parameter 

c falls into a distribution with local minimum and leads to a wrong inspection number.  

  The change of probability distribution function of uncertain parameter d is shown in Fig. 5-4. The 

results of inspection number and peak value is listed in Table 5-4. Different from the case of parameter 

c, the probability distribution function of parameter d converges and concentrates to the true value 

slower but no local minimum problem occurs. The estimated inspection number gives a good result. 

 

5.4.  Summary 

 

  The presented approach in chapter 2 and 3 is improved by introducing conditional probability. Both 

approaches give identical result but the improved method shows more flexibility. 

1. The method is applied to series multi-system to check the effect of increasing number of 

Bayesian updating.  

2. Results show that parameter β and d converge better when number of Bayesian updating 

increases. 

3. On the other hand, parameter c falls into local minimum and the number of Bayesian updating 

does not solve the problem. 
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Table 5-1 Inspection schedule of non-periodic scheme by conditional probability (true value) 

Inspection no. Inspection time (cycles) Inspection interval (cycles) 

1 8740 8740 

2 14460 5720 

3 17520 3060 

4 19680 2160 

5 21370 1690 

6 22810 1440 

7 24070 1260 

8 25200 1130 

9 26240 1040 

10 27190 950 

11 28060 870 

12 28900 840 

13 29700 800 

 

 

 

(a) Reliability of a single element 

 

(b) Reliability of entire system with 50 elements 

Fig. 5-1 Reliability for the non-periodic inspection by conditional probability 
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Table 5-2 Bayesian estimation after multi-system life (uncertain parameter β) 

System no. 
Number of 

Inspections 

Peak value of 

parameter β 

1 16 40000 

2 14 38000 

3 14 40000 

4 13 40000 

True value 12.98 40000 

 

 

 

(1) System no. 1                           (2) System no. 2 

 

(3) System no. 3                          (4) System no. 4 

 

Fig. 5-2 Change of probability distribution function (uncertain parameter β) 
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Table 5-3 Bayesian estimation after multi-system life (uncertain parameter c) 

System no. 
Number of 

Inspections 

Peak value of 

parameter c 

1 12 1.600E-4 

2 11 1.800E-4 

3 11 2.000E-4 

4 11 2.000E-4 

True value 12.98 1.600E-4 

 

 

 

(1) System no. 1                           (2) System no. 2 

 

(3) System no. 3                          (4) System no. 4 

 

Fig. 5-3 Change of probability distribution function (uncertain parameter c) 
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Table 5-4 Bayesian estimation after multi-system life (uncertain parameter d) 

System no. 
Number of 

Inspections 

Peak value of 

parameter d 

1 13 50 

2 14 54 

3 14 48 

4 13 42 

True value 12.98 40 

 

 

 

(1) System no. 1                           (2) System no. 2 

 

(3) System no. 3                          (4) System no. 4 

 

Fig. 5-4 Change of probability distribution function (uncertain parameter d) 
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6. Example of application 

 

  An example of application to the gas turbine engine components is shown in this chapter. 

 

6.1.  Retirement for cause 

 

  Retirement for cause (RFC) is a life cycle management procedure for gas turbine engine 

components, such as fan, compressor and turbine disks. The procedure enables full use of the safe life 

inherent in each component, as opposed to arbitrary retirement from service of all components at a 

calculated low cycle fatigue life. Historically, these components are retired when they reach an 

analytically determined lifetime where the first fatigue crack per 1000 disks could be expected. By 

definition then, 99.9 percent of these components were being retired prematurely, while they still may 

have had useful life remaining. 

  The retirement for cause approach [3] is based on fracture mechanics and nondestructive evaluation 

(NDE). When components reach the analytically determined lifetime, nondestructive inspection is 

applied. Only components with cracks are retired, as opposed to arbitrary retirement from service of 

all components. The analytically determined lifetime, the time when a detectable crack is found in 

1/1000 probability, is the interval to the first inspection. All intact components are return to service 

after inspection. Fig. 6-1 is a figure pickup from reference [3], which shows the base retirement for 

cause concept. The safe return-to-service intervals is determined by the propagation time between 

NDE limit length and critical length of failure.  

  As described above, RFC procedure is a deterministic method depended on the prior knowledge of 

initiation and propagation of fatigue cracks. Difficulties are encountered in cases where the parameters 

are uncertain. 

 

 

Fig. 6-1 Base retirement for cause concept (from ref. [3]) 
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6.2.  Estimation of parameters 

 

  The Bayesian approach is applied to the gas turbine engine disks. The objective of the application 

is to improve the RFC procedure by non-periodic inspection and Bayesian method. RFC procedure is 

a deterministic method with all parameters are given. On the other hand, Bayesian method introduces 

some uncertain parameters and updates their joint density function after inspection results are available.  

  According to the discussions in the former chapters, Bayesian updating of multiple uncertain 

parameters works not so good because of local minimum and lack of information. A simplified 

Bayesian method with single uncertain parameter is applied to the problem of turbine engine. In order 

to obtain an inspection scheme similar to RFC procedure, some minor modifications are done to the 

normal Bayesian method as shown in Table 6-1. It should be pointed out that RTS interval is the most 

important parameter for RFC. That is the reason why parameter c in the propagation function of the 

fatigue cracks is selected to be uncertain in our discussion.  

 

Table 6-1 Comparison of RFC, normal Bayesian method and application to turbine engine 

 
RFC  

(Retirement for cause) 
Normal Bayesian method 

Bayesian method applied 

to turbine engine 

Initiation of 

cracks 

Deterministic, affect only 

the first inspection 

Consider as probability, 

parameter β may be 

uncertain 

Consider as probability, 

parameter β fix to true 

value 

Propagation 

of cracks 

Deterministic, affect the 

RTS intervals 

Consider as probability, 

parameter c may be 

uncertain 

Consider as probability, 

parameter c may be 

uncertain 

Detectability May consider, normally 

assume to be 100% 

Consider as probability, 

parameter d may be 

uncertain 

Consider as probability, 

parameter d fix to true 

value 

Failure rate Depend on crack length, 

critical length set 

Before initiation: random 

After initiation: function 

of time (cycles) 

Before initiation: random 

After initiation: function 

of crack length 

 

 

6.2.1. Initiation of a fatigue crack 

 

  All fatigue data have inherent scatter. The data base used for design life analyses purposes must be 

applicable to all disks of a given material, and therefore includes test results from many heats and 

sources. According to reference [3], data are treated statistically as shown in Fig. 6-2.  

DISTRIBUTION A. Approved for public release: distribution unlimited.



57 

 

  The time to crack initiation (TTCI) is assumed to be a random variable with density function 

following the Weibull distribution as shown in eq. (2-1). Copy as follows: 

𝑓𝑐(𝑡|𝛽) =
𝛼

𝛽
∙ (

𝑡

𝛽
)

∝−1

∙ 𝑒𝑥𝑝 [− (
𝑡

𝛽
)

𝛼

]            𝑡 > 0. (6-1) 

  The parameters for gas turbine engine disks are chosen as 𝛼 = 2 and 𝛽 = 60000. The probability 

density function of the initiation of a fatigue crack is shown in Fig. 6-3. Under the conditions of 𝛼 =

2 and 𝛽 = 60000, the curves in Fig. 6-2 and Fig. 6-3 are similar. 

  It is noted that the number of cycles to initiate a fatigue crack in a 1/1000 probability is 1897. The 

initiation crack length is assumed to be 0.25mm in Fig. 6-3, while the crack length in Fig. 6-2 is 

supposed to be 0.03inch = 0.762mm. 

 

 

Fig. 6-2 Material data scatter results in conservative life prediction (from ref. [3]) 

 

 

Fig. 6-3 Probability density function of the initiation of a fatigue crack (0.25mm) 
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6.2.2. Propagation of a fatigue crack 

 

  Fracture mechanics theory is used to determine the length of a propagating crack under random 

stress. It is assumed that a crack grows according to eq. (2-3) and (2-4). Copy eq. (2-4) as follows: 

𝑎(𝑡 − 𝑡𝑐|𝑐) = [−𝑏′𝑐(𝑡 − 𝑡𝑐) + 𝑎0
−𝑏′

]
−1 𝑏′⁄

 where 𝑏′ =
𝑏 − 2

2
  . (6-2) 

  The parameters for gas turbine engine disks are chosen as 𝑏 = 2.96 and 𝑐 = 1.0 × 10−3. The 

propagation curve of a fatigue crack is shown in Fig. 6-4. Refer to reference [3], the initial crack length 

is assumed to be 𝑎0 = 0.25mm, the detectable crack length is 0.5mm and the critical length is 1.5mm. 

 

Fig. 6-4 Propagation of a fatigue crack (upper graph from ref. [3]) 

 

6.2.3. Probability of crack detection 

 

  The probability of detecting an existing crack (POD) of length a during an inspection is given by 

eq. (2-5). Copy as follows: 

𝐷(𝑎|𝑑) = 1 − 𝑒𝑥𝑝 [− (
𝑎 − 𝑎𝑚𝑖𝑛

𝑑 − 𝑎𝑚𝑖𝑛
)

𝜃

] . (6-3) 
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  The parameters for gas turbine engine disks are chosen as 𝜃 = 2 and  𝑑 = 0.5 .   The cracks 

shorter than 𝑎𝑚𝑖𝑛 = 0.25mm are supposed to be undetectable. The curve of probability of detection 

under these conditions is shown in Fig. 6-5. It is calculated that the detectability of 0.5 mm crack is 

0.6321 and the detectability of 1.5 mm crack is 0.9999. 

 

 

Fig. 6-5 Probability of detection 

 

6.2.4. Reliability depending on crack length 

 

  Reliability after crack initiation is assumed to be a function of the crack length a as follows: 

𝑉1(𝑎) =  𝑒𝑥𝑝 {− (
𝑎

𝛽𝑓
)

𝛼𝑓

} . (6-4) 

  Because the crack length a is a function of time as eq. (6-2) shows, the equation of reliability can 

be rewrite as:  

𝑉1(𝑡 − 𝑡𝑐) =  𝑒𝑥𝑝 {− (
𝑎(𝑡 − 𝑡𝑐)

𝛽𝑓
)

𝛼𝑓

}       for  𝑡 > 𝑡𝑐 . (6-5) 

  The critical length for a fatigue crack in engine disks is set to be 1.5mm as discussed above. The 

reliability when a 1.5mm crack exists is defined to be 0.5, and this condition (a 1.5mm length crack 

exists or conditional reliability 0.5 after crack initiation) is set as the minimum reliability level when 

planning the inspection scheme. 

  According to the condition that reliability is 0.5 when a 1.5mm crack exists, the parameters for gas 

turbine engine disks in eq. (6-4) and (6-5) are chosen as 𝛼𝑓 = 3.7 and 𝛽𝑓 = 1.656 . The reliability as 

a function of crack length or cycles is shown in Fig. 6-6. The number of cycles when reliability 

decreases to 0.5 is 2337. One thing must be remembered is that this reliability is under the condition 

of crack initiation. Considering the probability of crack initiation should be 1/1000 as required by RFC 
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procedure, the true reliability is 0.9995 instead. 

  Different from RFC, the Bayesian method presented here can also consider the random failure 

before crack initiation during the service life. The whole service life is assumed to be 12000 cycles 

based on the data in reference [3]. Reliability from time instant Tl up to time instant t is denoted as U 

and given by eq. (2-9). Copy as follows: 

𝑈(𝑡 − 𝑇𝑙) = 𝑒𝑥𝑝{−(𝑡 − 𝑇𝑙) ∙ 𝑒𝑥𝑝(𝑟)}      for  𝑡 ≤ 𝑡𝑐 ,  (6-6) 

where Tl is the time of service initiation for the element, tc is the time of crack initiation.  

  Assuming that the reliability U in whole service life will decrease to nearly 0.9995 (the same as a 

1.5mm crack occurs), the parameter r is chosen as -17.0. The cycles when reliability U becomes 0.9995 

is 12800 as shown in Fig. 6-7. 

 

 

    

(a) Reliability vs. crack length                (b) Reliability vs. cycles 

Fig. 6-6 Reliability after initiation of a fatigue crack 

 

 

 

Fig. 6-7 Reliability before crack initiation (random failure) 
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  Including the random failure shown in eq. (6-6), the reliability of an element after crack initiation 

during the service period from time instant of crack initiation tc up to time instant t is denoted as V and 

given by: 

𝑉(𝑡 − 𝑡𝑐) = 𝑒𝑥𝑝 {− (
𝑎(𝑡 − 𝑡𝑐)

𝛽𝑓
)

𝛼𝑓

− (𝑡 − 𝑡𝑐) ∙ 𝑒𝑥𝑝(𝑟)}      for  𝑡 > 𝑡𝑐  . (6-7) 

 

  All parameters for gas turbine engine disks are summarized in Table 6-2. The design life limitation 

of disks is 12000 cycles which is also the service life of a turbine engine. To secure the safety of the 

safety-critical system turbine engine, not only the total reliability level but also the reliability level of 

a single element are considered. Total number of components (disks) in the system (engine) is selected 

to be 500 in this study. 

  Only the parameter c in the equation of crack propagation is considered as uncertain. The range is 

also shown in Table 6-2. 

 

 

Table 6-2 Values of parameters in numerical simulation for engine disks 

Item True values Uncertain range 

General Design life limitation 12,000 cycles  

Minimum level of Rsingle 0.9995  

Number of element M 500  

Minimum level of Rdesign 0.9995500 = 0.7788  

Initiation: 

Eq. (6-1) 

Parameter α 2.0  

Parameter β 60,000 cycles  

Propagation: 

Eq. (6-2) 

Parameter b 2.96  

Parameter c 1.0*10-3mm-0.48/cycle 0.5*10-3 ~ 1.5*10-3 

Initial crack length a0 0.25mm  

Detectability: 

Eq. (6-3) 

Parameter amin 0.25mm  

Parameter θ 2.0  

Parameter d 0.5mm  

Reliability: 

Eq. (6-6) 

Eq. (6-7) 

Parameter r -17.0  

Parameter αf 3.7  

Parameter βf 1.656mm  
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6.3.  Non-periodic inspection intervals using true value of parameter 

 

  RFC procedure is a periodic inspection scheme except for the first time of inspection. On the other 

hand, the approach presented in this study is a non-periodic inspection method. The inspection scheme 

when all parameters are fixed to their true values are discussed in this section first. 

 

6.3.1. The effect of number of components 

 

  Inspections scheme for turbine engine disks are optimized by presented approach. Because of the 

fact that not only the total reliability level but also the reliability level of single element are considered, 

number of the components does not affect the inspection scheme itself. Simulations are performed for 

one element and 500 element system.  

  The reliability of single element for both systems are shown in Fig. 6-8 and Fig. 6-9. The ● mark 

shown in the figures represents the replacement of one or more components. Both cases need 8 

inspections for the whole service life, and the inspection schemes are exactly the same.  

  For the system with only one element, the reliability is mainly depend on the reliability function 

when no initiation of cracks (very small chance a fatigue crack occurs for only one element). For the 

system with 500 elements, some components are replaced due to cracks found but there are always 

some other elements remain un-replaced. The inspection scheme is decided by the un-replaced 

elements which means that it should be the same as one element system. 

  The intervals between each sequent inspections are shown in figures. Intervals become shorter as a 

function of the time. This is a logical consequence which is more reasonable than periodic inspection. 

  As a comparison, the normal RFC procedure is estimated as follows: 

𝑇𝑓𝑖𝑟𝑠𝑡 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 + (𝑇𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 0.5𝑚𝑚 + 𝑇𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 1.5𝑚𝑚)/2 =

1897 + (1147 + 2337)/2 = 3639 cycles, 
(6-8) 

𝑇𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑛𝑒𝑡𝑟𝑣𝑎𝑙 = 𝑇𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 1.5𝑚𝑚 − 𝑇𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 0.5𝑚𝑚 = 1190  cycles. (6-9) 

  The interval of first inspection and average intervals after 2nd inspection (3350 and 1179) of the 

non-periodic scheme is slightly smaller than the values (3639 and 1190) from RFC but similar. 

 

6.3.2. The effect of random failure 

 

  Normal RFC procedure does not consider the random failure which is less probability comparing 

with failure due to fatigue cracks. This is a reasonable process but still may cause minor error. The 

non-periodic approach is applied omitting the random failure as it was done in RFC. The reliability of 
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single element during the service life is shown in Fig. 6-10. The intervals are slightly longer than the 

ones shown in Fig. 6-8 and Fig. 6-9. 

  The interval of first inspection and average intervals after 2nd inspection (3560 and 1199) when 

omitting random failure is very similar with the values (3639 and 1190) from RFC. 

 

 

Fig. 6-8 Reliability of single element (1 element system, true value) 

 

 

Fig. 6-9 Reliability of single element (500 element system, true value) 

 

 

Fig. 6-10 Reliability of single element (500 elements, true value, ignore random failure) 
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6.3.3. The effect of probability of detection 

 

  The effect of probability of detection is discussed in this section. In normal RFC procedure, the 

POD is assumed to be 100% for the sake of simplification. The non-periodic scheme is applied for the 

cases that POD of 0.5mm crack increase from 0.63 to 0.94 (Parameter d changes from 0.5 to 0.4). 

  Simulation results of the reliability of single element during the service life is shown in Fig. 6-11. 

The first interval keeps the same while the subsequent intervals increase a lot and only six inspections 

are needed for the whole service life. The results shows that neglecting the POD will cause big error 

for the subsequent inspection intervals. 

 

 

Fig. 6-11 Reliability of single element (500 element, true value, ignore random failure, higher POD) 

 

6.4.  Non-periodic inspection intervals with an uncertain parameter 

 

  As describe above, only the parameter c in the equation of crack propagation is considered as 

uncertain. Total number of elements is 500, which gives more information to the Bayesian updating 

comparing with chapter 3 and 4. This makes the Bayesian updating possible to converge faster and 

better to the true value. 

  One simulation result is shown in Fig. 6-12 and Fig. 6-13, where Fig. 6-12 is the change of 

distribution function for parameter c, Fig. 6-13 is the reliability of single element during the service 

life. The inspection time and intervals are listed in Table 6-3. Most of the intervals become smaller as 

a function of time. Inspection intervals become similar in the latter half of the service life. 

  Another simulation results is shown in Fig. 6-14 and Fig. 6-15, and the inspection time and intervals 

are listed in Table 6-4. This is a unique case in which there is no crack found in 2nd to 4th inspections. 

The distribution function is updated as that the parameter c is more likely be a small value. Cracks 

may potentially exist in the components because of the slow propagation, thus inspection intervals is 
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predicted to be smaller than in schedule 1. The interval become longer when some cracks found in 5th 

inspection and distribution function move to the true value gradually.  

 

Table 6-3 Inspection schedule 1 (uncertain parameter c) 

Inspection no. Inspection time (cycles) Inspection interval (cycles) 

1 3350 3350 

2 4690 1340 

3 5980 1290 

4 7250 1270 

5 8340 1090 

6 9520 1180 

7 10640 1120 

8 11700 1060 

 

 

Fig. 6-12 Change of probability distribution function in scheme 1 (uncertain parameter c) 

 

 

Fig. 6-13 Reliability of single element in inspection scheme 1 (500 elements) 
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Table 6-4 Inspection schedule 2 (uncertain parameter c) 

Inspection no. Inspection time (cycles) Inspection interval (cycles) 

1 3350 3350 

2 4630 1280 

3 5570 940 

4 6390 820 

5 7130 740 

6 8140 1010 

7 9260 1120 

8 10500 1240 

9 11600 1100 

 

 

Fig. 6-14 Change of probability distribution function in scheme 2 (uncertain parameter c) 

 

 

 

Fig. 6-15 Reliability of single element in inspection scheme 2 (500 elements) 
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6.5.  Statistical analysis results 

 

  Two examples of simulation results are shown in former section. The first inspection interval, only 

depended on the initiation of fatigue cracks, keep a constant value no matter how the uncertain 

parameter (concern to the propagation) is. Following inspection intervals are mainly depended on the 

updating of the uncertain parameter c. This is a reasonable consequence because the parameter c is 

unknown and only information from inspection results are considered available. 

  Bayesian updating with three different true values (0.7E-3, 1.0E-3 and 1.3E-3) of parameter c are 

shown in Fig. 6-16. Both three cases converge close to the true values eventually. Different from the 

examples shown in chapter 3 and 4, the Bayesian updating of parameter c converges to the true values 

faster and better. The eventual peak values are also higher which means the values are more 

concentrated to the true values. This is mainly results from the fact that the number of elements (500) 

is bigger and more information are obtained from each inspection. 

  Statistical analysis are performed treating parameter c as uncertain but actually it has a true value 

(for example, 0.7E-3, 1.0E-3 and 1.3E-3). This is a practical truth that the crack propagation may 

follow a kind of function with a certain parameter which is unknown beforehand. With different true 

values of parameter c, the RFC procedure is applied, the first inspection time and sequent inspection 

intervals (RTS intervals, return to service intervals) can be computed as eq. (6-8) and (6-9) shown. 

The non-periodic inspection intervals are also estimated by presented approach with the true values of 

parameter is known beforehand. The non-periodic inspection scheme is fixed when parameter is fixed. 

  Results of 9 cases (3 cases of RFC procedure, 3 cases of non-periodic inspection with true value, 

and 3 cases of non-periodic inspection using Bayesian method) are shown in Table 6-5. The time of 

first inspection, the interval for 2nd inspection, the average interval from 2nd inspection to last 

inspection and the number of inspection are compared. 

  First, the results by RFC procedure and by presented approach are very similar. The most important 

point is that the average interval after 2nd inspection is nearly the same by either methods. It should be 

noted that the interval for 2nd inspection is longer in the cases of non-periodic inspection, and 

eventually reach the same average interval as RFC procedure. This is a logical results considering the 

aging of un-replaced components. The similarity between the results of two methods also proves the 

practicality of presented approach. 

  Second, the results by presented approach when treating parameter c as uncertain values and fixed 

values are also very similar. In other words, the Bayesian method solves the uncertainty of the 

parameter and gives a result similar to that when the value of the parameter is known. The standard 

deviation of inspection intervals is around 10% for all cases. It may be considered as a practical level 

with acceptable error. 
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(a) True value 0.7E-3 

 

(b) True value 1.0E-3 

 

(c) True value 1.3E-3 

Fig. 6-16 Change of probability distribution for different true value 
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  Finally, as shown in Table 6-5, RFC procedure and non-periodic inspection using a true value of 

parameter are very sensitive to the value itself. That is to say, when a wrong value of parameter is used, 

a wrong scheme will be obtained. On the other hand, Bayesian updating which treats this parameter 

as uncertain will always leads to a proper scheme. Comparisons of average interval from 2nd inspection 

(RTS interval in the RFC procedure) when the right value of parameter c is 0.7E-3, 1.0E-3 and 1.3E-

3 separately are shown in Fig. 6-17, Fig. 6-18 and Fig. 6-19. Wrong prior knowledge of the value of 

parameter leads to wrong answer. On the other hand, the Bayesian approach gives a good results which 

error is less than 5% (assuming RFC with right value is the right answer). 

 

6.6.  Summary 

 

  An example of application to gas turbine engine components is shown in this chapter. Contents and 

results are summarized as follows: 

1. Appropriate modifications are done in order to apply this approach to inspection scheme of 

engine components. Parameters are decided according to a reference article. 

2. Inspection scheme similar with a RFC procedure can be obtained by presented approach, and 

more flexibility by including random failure, POD and uncertainty of crack propagation 

parameter is available. 

3. The Bayesian approach is an advanced method for optimization of non-periodic inspection 

intervals. It can give a same or even better scheme than normal RFC method and shows great 

robustness against the prior knowledge. 

 

Table 6-5 Statistical results of different inspection schemes (1000 samples) 

Conditions 

Time of 

First 

inspection 

Inspection interval 

for 2nd inspection 

Average interval 

from 2nd inspection 

Number of 

inspections 

Mean SD Mean SD Mean SD 

RFC: c = 0.7E-3 4385 1701 --- 1701 --- 5 --- 

True: c = 0.7E-3 4210 1810 0 1502 0 6 0 

Uncertain c (0.7E-3) 4210 1952.3 97.4 1615.5 177.8 5.45 0.60 

RFC: c = 1.0E-3 3639 1190 --- 1190 --- 8 --- 

True: c = 0.7E-3 3350 1490 0 1179 0 8 0 

Uncertain c (1.0E-3) 3350 1400.1 106.5 1188.4 148.3 7.94 1.05 

RFC: c = 1.3E-3 3237 916 --- 916 --- 10 --- 

True: c = 0.7E-3 2880 1290 0 981 0 10 0 

Uncertain c (1.3E-3) 2880 1097.7 96.4 929.5 96.9 10.46 1.22 
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Fig. 6-17 Comparison of average interval from 2nd inspection (right value of c: 0.7E-3) 

 

 

Fig. 6-18 Comparison of average interval from 2nd inspection (right value of c: 1.0E-3) 

 

 

Fig. 6-19 Comparison of average interval from 2nd inspection (right value of c: 1.3E-3) 
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7. Conclusion 

 

  An advanced computational method for optimization of non-periodic inspection intervals for aging 

infrastructure is presented in this report. Fatigue is one of the most important problems of aging 

infrastructure subjected to random dynamic loads. Fatigue damage is considered to initiate in structural 

element and continues by crack propagation, resulting in strength degradation. 

 

  The whole or part of the aging infrastructure is refereed as a system which consists of a specific 

number of elements. The system is modeled by functional forms including equations for fatigue crack 

initiation, crack propagation, probability of detection, failure rate and probability of safety. All 

possible events and their probability are considered in order to estimate the reliability of a certain 

element at any specific time.  

 

  Some parameters of these functions are considered as possible sources of uncertainty. Bayesian 

method is applied in order to solve the problem of these uncertainties, and these parameters are 

modified according to the information from inspection results. The reliability of the entire system 

considering a distribute function of uncertain parameters is calculated by an integral over whole 

variable space.  

 

  The optimization of non-periodic inspection intervals is performed by computing the reliability step 

by step and find the maximum value satisfying that the reliability maintains above a pre-specified 

level. The advanced computational method introduced here is a combination of probabilistic analysis 

and Bayesian updating. Any simulation results by this method are casual results due to the uncertainty 

of crack initiation, uncertainty of crack detection, and the uncertainty of parameters as well. Statistical 

analysis is performed to evaluate the effect of the advanced computational method. 

 

  Discussions and conclusions in this report are summarized as follows: 

 

1) Non-periodic inspection scheme using probabilistic method 

The non-periodic inspection scheme is optimized by an advanced probabilistic analysis method. 

The non-periodic inspection scheme is obviously superior to periodic inspection because of 

higher reliability and less inspections. Results show that this advanced approach can reduced 

inspection cost and at the same time maintain the estimated reliability above a required level.  

The presented approach is applicable to optimization of inspection intervals because of its high 

reliability. 
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2) Bayesian method for uncertain parameters 

Bayesian method is applied to deal with the uncertainty of parameters. By Bayesian updating, the 

uncertain parameters can be estimated appropriately and reasonable inspection interval is 

scheduled. Wrong estimated value of parameter will result in wrong inspection scheme which 

cause low reliability or high cost. Bayesian updating can revise wrong prior knowledge and more 

reasonable inspection scheme is obtained. The selection of uncertain parameters is important and 

single uncertain parameter is preferred. Bayesian method works better if more information is 

available. 

 

3) Application to turbine engine components 

An application example for turbine engine components is shown in this report. Appropriate 

modifications and parameter selections are performed according to knowledge in this works and 

reference. Inspection scheme similar to a RFC procedure can be obtained, and more flexibility 

by including random failure, POD and uncertainty of crack propagation parameter is available. 

The advanced Bayesian approach can optimized the non-periodic inspection interval when the 

parameter of crack propagation function is unknown, while the normal RFC procedure meets 

difficulties. The Bayesian approach gives a same or even better scheme than normal RFC method 

and shows great robustness against the prior knowledge. 
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